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A B S T R A C T   

Microbial communities and environmental conditions are both of great importance for efficient utilization of 
agroforestry resources. Nevertheless, knowledge about the role of soluble nutrients and enzymatic properties, 
and their inner links with microbial communities remain limited. This is especially the case for the co- 
composting of agricultural and forestry biowaste. Here, we investigate the succession of key microbes during 
co-composting (sawdust + cow manure, SA; straw + cow manure, ST), employing amplicon sequencing, enzyme 
assays, and physicochemical analyses. N-fixing bacteria (Pseudomonas) and C-degrading fungi (Acaulium) have 
been identified as dominant taxa during such co-composting. Although eight antibiotic resistance genes were 
found to persist during composting, pathogenic microbes declined with composting time. NO3

− -N content was 
screened as a determinant structuring the bacterial and fungal communities, with importance also shown for C- 
degrading enzymes such as cellulose, laccase, and peroxidase activity. 

These results identify the key microbial taxa and their main interactive environmental factors, which are 
potentially valuable for the development of a mixed microbial inoculant to accelerate the maturation of agro-
forestry biowastes composting.   

1. Introduction 

Abundant agricultural bioresources including crop straw, grain husk, 
sawdust, and animal wastes, can be used as renewable materials (Zeng 
et al., 2007; Parker and Philip, 2010). China produced 900 million tons 
of crop straw residues in 2020, but most were burned (Gadde et al., 
2009; He et al., 2020a). In forest ecosystems, timber processing produces 
plentiful sawdust, with ~50% of the harvested wood ending up as waste 
(Škrbić et al., 2018). These agroforestry biowastes cause serious 
resource waste and environmental pollution (Škrbić et al., 2018; He 
et al., 2020a) and therefore need to be utilized efficiently. 

Co-composting agroforestry biowastes with livestock manure is an 
optimized method to convert complex organics into harmless humus 

(Wei et al., 2020; Jiang et al., 2020; Yue et al., 2022; Chen et al., 2022). 
Traditionally, livestock manure was treated as a nutrient reservoir rich 
in organic matter, macronutrients (N, P, K), and trace elements (Chen 
et al., 2013) but it is also a source of antibiotic resistance genes and 
human pathogens (Guo et al., 2021; Zhang et al., 2022; Zhu et al., 2022). 
Compost maturity improvement and harmless utilization of livestock 
manure as organic fertilizers are therefore of great importance (Ro et al., 
2016; Guo et al., 2020; Li et al., 2020a). Applying agroforestry 
byproducts such as straw, cornstalks, and sawdust is an efficient way to 
accelerate compost maturity through exogenous C-additives (Huang 
et al., 2004; Zhang et al., 2021a). Moreover, the main components 
(cellulose, hemicellulose and lignin) of C-additives could support mi-
crobial metabolism and accelerate compost maturation (Huang et al., 
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2004; Yu et al., 2019; Zhang et al., 2021a). During composting, bacterial 
and fungal communities substantially vary (Meng et al., 2019; Bello 
et al., 2020; Zhu et al., 2021a), and their community structure and 
C-component-related metabolic activity are key driving factors (Meng 
et al., 2019; Bello et al., 2020). Overall, the interaction between enzyme 
and microbe is close and simultaneously co-regulated by various factors 
including moisture, pH, composting substrates, as well as the sugar 
fractions (i.e., polysaccharides and reducing sugars) that are derived 
from organic matter decomposition (Chefetz et al., 1998; Pérez et al., 
2002; Zhang and Lynd, 2010; Li et al., 2020b). However, compared to 
classical composting studies, our understanding on the associations 
among these factors are still limited. In particular, the following ques-
tions remain outstanding: 

i. What are the dominant microbial differences induced by exoge-
nous agroforestry C-additives with varied carbon to nitrogen (C/ 
N) ratios (important factors influencing compost quality (Eiland 
et al., 2001; Huang et al., 2004; Zhu, 2007; Guo et al., 2012; Qiao 
et al., 2021));  

ii. How are carbon components (hemicellulose, cellulose, and 
lignin) and C-degrading enzymes targeting those fractions 
simultaneously, especially for the co-composting of cow manure 
and agroforestry biowastes?  

iii. Are there some remaining latent risks (antibiotic resistance genes 
and pathogenic microorganisms) after compost maturation? 

Thus, in the present study, we explore variations in bacterial and 
fungal communities and their related C-compounds, C-degrading en-
zymes, and physicochemical properties during the co-composting of cow 
manure and different agroforestry biowastes (sawdust and straw). 

The detailed aims of this study were (1) to investigate the changes of 
physicochemical, nutrients and C-degrading enzyme activities, and their 
inner links with microbial communities over co-composting; (2) to track 
the characteristics of the main bacterial/fungal genera and pathogenic 
microorganisms involved in cow manure co-composting processes; and 
(3) to assess the persistence of pathogenic organisms and antibiotic 
resistance genes, as well as potential risks in co-composting. This work is 
of great importance for improving compost quality, minimizing related 
environmental risks, and subsequent application of livestock manures. 

2. Material and methods 

2.1. Experimental setup 

Two composts were prepared in December 2020 in Kunming Insti-
tute of Botany, Yunnan, China. Cow manure was blended with wood 
sawdust or straw (corn + rice) and composted in a greenhouse on a 
concrete surface. Cow manure and straw were collected from Kunming 
and Hongyan Village, Huize County, Yunnan, China (103◦29′E; 
26◦41′N). There were three biological replicates (as individual piles of 
100 kg dry weight, DW) for each compost type. Sawdust (SA) was made 
using 44.45 kg DW sawdust (oak, Quercus variabilis; and alder, Alnus 
japonica) in a ratio of 1:1 DW, 44.45 kg DW cow manure, 3.70 kg DW 
corn cob (Wuding Chunjiang Rare Fungus Co. Ltd., Yunnan, China), 
3.70 kg gypsum (Yunnan Taishan Gypsum Co., LTD, Yunnan, China), 
and 3.70 kg urea (Tianyi Chemical Fertilizer Co. Ltd., Yunnan, China). 
Straw compost (ST) was made by 44.45 kg DW straw (corn: rice = 1:1 
DW) with the same amounts of cow manure, corn cobs, gypsum and urea 
as in the SA. The characteristics of those materials used for composts are 
shown in Table S1. The composting pile (length × width × height = 1.0 
× 1.0 × 0.8 m) was mixed by inverting at days 10, 20, and 30. Four 
successive stages during composting were determined by changes in 
temperatures: initial stage (0–1 day, 27.86 ◦C), thermophilic stage (1–12 
days, peaking at 70 ◦C), cooling stage (12–25 days, 46.35 ◦C), and 
maturity stage (25–35 days, 27.11 ◦C). Compost samples were directly 
collected from the surface, center, and lower positions from the core of 

the composting piles and then manually mixed as a composite sample, at 
day 0 (D0), day 10 (D10), day 20 (D20), and day 30 (D30). The thoroughly 
mixed compost sample from each composting day was divided into two 
parts: one part was stored at − 20 ◦C for DNA extraction and the other 
was stored at 4 ◦C for physicochemical analysis. 

2.2. Physicochemical analysis 

Temperature and humidity of the environment and the composting 
piles (with probe inserted at the heap center) were measured daily with 
HOBO bio-recorders (Onset, Arkansas, USA) (Fig. S1). pH was measured 
using a pH meter (PHS–3C, Shanghai, China) (Yang et al., 2012). 
Compost moisture content was determined by mass change after 
oven-drying at 105 ◦C for 48 h. Cellulase activity was determined by 
anthrone colorimetric method (Xu, 1986). Laccase and Mn-dependent 
peroxidase activity was determined using a UV/VIS spectrophotometer 
(JingHua 752, Shanghai, China) at 420 nm (Zhang et al., 2019). Neutral 
Xylanase was determined based on the method provided by Savoie and 
Libmond (1994). Total sugar and total reducing sugar contents were 
measured using the anthrone-based method (Wen et al., 2005). Compost 
sample hemicellulose was hydrolysed with 2 M hydrochloric acid and 
determined by a UV/VIS spectrophotometer (Xiong et al., 2005), and 
cellulose and lignin contents were measured by anthrone-sulfate color-
imetry (Wang, 2006) and the concentrated sulfuric acid method (Xiong 
et al., 2005). Total nitrogen (TN) and carbon (TC) contents were 
quantified using an Elementar Vario MICRO cube (Elementar, Hanau, 
Germany) (Schumacher et al., 2009). Concentrations of ammonium 
(NH4

+-N) and nitrate (NO3
− -N) were analyzed by a Dual channel flow 

analyzer (SEAL Analytical GmbH, Norderstedt, Germany) (Wang et al., 
2018). All measurements were conducted in triplicate. 

2.3. DNA extraction and Illumina MiSeq sequencing of 16S rRNA and 
ITS1 amplicons 

Total DNA from 0.5 g fresh compost was extracted using a FastDNA 
Spin Kit for Soil (Qbiogene, Irvine, CA, USA) according to the in-
structions of the manufacturer. The quality and quantity of extracted 
DNA was determined using a NanoDrop spectrophotometer (NanoDrop 
Technologies, Wilmington, DE, USA) (Wang et al., 2018). 

Illumina MiSeq sequencing was employed to investigate the shifts of 
bacterial and fungal communities in composts. The V4–V5 region of the 
16S rRNA gene was amplified using the primer set 515F (5′- 
GTGCCAGCMGCCGCGGTAA-3′)/907R (5′-CCGTCAATTCMTTTRAGT 
TT-3′), which produces accurate taxonomic information with little bias 
for different bacterial classes. The ITS1 gene was amplified using the 
primer set ITS 5F (5′-GGAAGTAAAAGTCGTAACAAGG-3′) and ITS 1R 
(5′-GCTGCGTTCTTCATCGATGC-3′) (He et al., 2020b), which assigns 
accurate taxonomic information for fungal classes. All PCR amplifica-
tions were conducted and visualized on 1.0% agarose gels with Gold-
View™ (0.005%, v/v; SBS Genetech, Beijing). Purified PCR amplicon 
concentrations were determined prior to MiSeq sequencing. The QIIME 
2 software package was used for sequencing data analysis, and the 
pipelines were followed as previously described (Bokulich et al., 2017; 
Wang et al., 2018). Raw sequence data were deposited in the NCBI 
Sequence Read Archive under accession numbers SUB10865378 (Bac-
terial sequences) and SUB10863577 (Fungal sequences). 

2.4. Statistical analysis 

Excel and SPSS (SPSS Inc., Chicago, USA, V20) were employed for 
statistical analysis. Significant differences between data (means ± SD, n 
= 9) of treatments were compared with the Least Significant Difference 
at the P < 0.05. Bray–Curtis distance-based PCA (principal component 
analysis) and redundancy analysis (RDA) were performed in R4.1.0 
using the packages of vega, devtools and an ade4. Origin 2021b (Ori-
ginLab, USA) software was used for graphic production. 

Y. He et al.                                                                                                                                                                                                                                       
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3. Results 

3.1. Physicochemical and nutrient changes during co-composting 

Composting properties were tracked across initial stabilization 
(Day0/D0), thermophilic (Day10/D10), cooling (D20), and maturation 
stages (D30). At the thermophilic (D10) stage, the two composts reached 
their significantly highest temperature (P < 0.05, Fig. S1D) and the 
compost pH was greater than 8 and changed similarly with temperature 
(Table 1). At the cooling stage (D20), NH4

+-N content was significantly 
highest (P < 0.05). At the maturation stage (D30), the NO3

− -N concen-
tration reached the highest value but the contents of total nitrogen and 
total carbon (TC) of the two co-composting gradually decreased by 
~10%, averaging 23 mg g− 1 and 330 mg g− 1, respectively (Table 1). 
Total and reducing sugar concentrations slowly decreased during com-
posting (Fig. 1). A similar trend was also observed for cellulose and 
hemicellulose, ranging from 40 mg g− 1 to 50 mg g− 1 (Fig. 1). Chemical 
and physical properties of composting raw materials were generally 
found to vary similarly between the two composts (sawdust + cow 
manure, SA; straw + cow manure, ST) and can be seen in Supplementary 
File 1. 

3.2. Enzyme activities and their correlations with other parameters 

Carbon components such as hemicellulose (neutral xylanase), cel-
lulose (cellulase), and lignin (laccase and Mn-dependent peroxidase) 
were measured with the aim of understanding C-dynamics during 
composting (Fig. 2). Specifically, neutral xylanase activity decreased 
(~5 U g− 1) in the thermophilic stage, but increased (averaged 12 U g− 1) 
in the cooling stages (Fig. 2B). The change of cellulase activity had a 
similar trend (sharply increased to ~30 U g− 1 and then decreased to 
~10 U g− 1) with composting temperature (Fig. 2A). Peroxidase activity 
showed an obviously opposite trend as compared to the change of 
cellulase, and ranged from 2 to 6 U g− 1 (Fig. 2C). Laccase activity 
generally decreased from 10 U g− 1 to 4 U g− 1 over the composting 
process (Fig. 2D). 

Correlation analyses showed, in both cow manure co-composts, that 
the key physicochemical parameters (pH and temperature) and the total 
amount of carbon and nitrogen nutrients (TC and TN) all had significant 
positive correlations with each other (Fig. 3). The two forms of inorganic 
N (NH4

+-N and NO3
− -N), however, had no significant relationships with 

each other. The accumulation of NO3
− -N was closely associated with the 

decomposition of cellulose over the composting process (negative cor-
relation, P < 0.05; Fig. 3), but NH4

+-N concentration tended to increase 

along with the total sugar consumption during composting (negative 
correlation, P < 0.01; Fig. 3). The increases of lignin-degrading enzyme 
activities (laccase and peroxidase) were significantly correlated with 
consumption of total sugar. Cellulase, laccase, and peroxidase activities 
were significantly positively related with composting temperature (n =
24, P < 0.01; Fig. 3); but the xylanase (a thermo-tolerant enzyme) had a 
negative association with temperature (Fig. 3). 

3.3. Characteristics of bacterial and fungal communities during 
composting 

A total of 1,505,668 and 2,435,692 high-quality bacterial and fungal 
sequences were obtained from all samples, with an average of 62,736 
(bacterial) and 8,545 (fungal) sequences per sample (Table S2). During 
each composting stage, the ratio of shared/unique microbial ASVs was 
stable at ~30% in the two composts (Figs. S2 and S5). 

For bacterial ASVs, there were 39 bacterial phyla detected with the 
dominance of Proteobacteria (average ~50%), Bacteroidetes (20%), and 
Firmicutes (~15%), and a lower representation from other phyla 
(<10%) including Acidobacteria, Actinobacteria, Chloroflexi, 
Deinococcus-Thermus, and Planctomycetes (Fig. S3A). Compared with 
the initial stage (D0), the average relative abundance of Bacteroidetes 
increased by ~45% at the end of composting (D30) in both composts 
(Fig. S3A). Other phyla showed an inconsistent variation between the 
two composts (Supplementary file 1). Dominant bacterial genera were 
Pseudomonas, Fermentimonas, Luteimonas, Myroides, Pusillimonas, and 
Ruminofilibacter (Fig. S4A). Substantial differences were found at the 
initial stage (Fig. 4A). The relative abundances of Pseudomonas, Mohei-
bacter, Algoriphagus, Ruminofilibacter, and Sporosarcina were 6-, 23-, 34-, 
80-, and 143-fold higher in ST-compost than in SA-compost, respectively 
(Fig. 4A). 

For fungal ASVs, a total of 10 fungal phyla were detected, and the 
dominant Ascomycota, Basidiomycota, Mortierellomycota, and Mucor-
omycota accounted for 72.95 ± 26.20% of the total sequences 
(Fig. S3B). The relative abundances of Ascomycota predominated and 
showed consistent increases in the two composts from ~50% to ~80%, 
whereas Basidiomycota decreased gradually from ~15% to ~5% 
(Fig. S3B). The fungal genera were significantly different between the 
two composts as revealed by PCoA analysis, and the prominent genera 
were Acaulium, Aspergillus, Lophotrichus, and Kernia (Fig. S4). The 
heatmap of the top 50 genera showed unique fungal composition vari-
ations during each cow manure co-composting stage (Fig. 4B). The 
dominant genera were Acaulium (12.50%), Lophotrichus (9.52%), and 
Wickerhamomyces (7.04%) in ST co-compost, while in SA, Aspergillus 

Table 1 
Variations in physicochemical properties at the center of the composting pile between SA and ST composts over a one-month composting period.  

Composting 
days 

Temperature 
(oC) 

moisture (%) pH (1:2.5 H2O) Total C (mg 
g− 1) 

Total N (mg g− 1) NO3
− -N (mg 

g− 1) 
NH4

+-N (mg 
g− 1) 

C/N (%) 

SA*         
D0 23.5 ± 2.7c,x 59.48 ± 3.08 c,x 8.61 ± 0.04 b,x 362.7 ± 19.4a,x 25.47 ± 1.57 a,x 0.08 ± 0.00b,x 2.68 ± 0.29b,x 14.3 ± 1.2 a,x 
D10 53.2 ± 1.2a,y 67.17 ± 2.70 ab, 

y 
8.97 ± 0.05 a,x 349.5 ± 32.8a,x 24.00 ± 0.80 ab, 

x 
0.10 ± 0.00b,x 3.23 ± 0.33b,x 15.3 ± 0.3 a,x 

D20 35.7 ± 2.5b,y 63.03 ± 1.45 bc, 
y 

8.70 ± 0.05 b,x 339.3 ± 8.1a,x 23.83 ± 1.17 ab, 
x 

0.08 ± 0.00b,x 5.10 ± 0.03a,x 14.3 ± 0.4 a,y 

D30 24.9 ± 2.5c,x 68.98 ± 2.54 a,y 7.70 ± 0.19 c,x 325.9 ± 50.3a,x 22.73 ± 1.34 b,x 0.14 ± 0.03a,x 3.78 ± 0.07b,x 14.3 ± 1.5 a,x 
ST         
D0 24.9 ± 1.6c,x 63.57 ± 3.98 b,x 8.53 ± 0.22 ab, 

x 
349.4 ± 17.5a,x 22.33 ± 2.15 a,x 0.07 ± 0.00a,y 2.27 ± 0.02d,y 15.7 ± 0.9 a,x 

D10 64.8 ± 3.7a,x 74.83 ± 2.66 a,x 8.90 ± 0.16 a,x 360.2 ± 6.5a,x 24.03 ± 0.67 a,x 0.09 ± 0.00a,y 3.10 ± 0.39b,y 15.0 ± 0.4 ab, 
x 

D20 46.2 ± 2.3b,x 73.92 ± 4.82 a,x 8.37 ± 0.31 b,y 350.5 ± 11.2a,x 23.70 ± 0.69 a,x 0.08 ± 0.00a,x 3.61 ± 0.22a,y 14.8 ± 0.3 ab, 
x 

D30 28.6 ± 3.4c,x 77.17 ± 1.11 a,x 7.61 ± 0.17 c,x 335.0 ± 19.6a,x 23.77 ± 1.50 a,x 0.31 ± 0.13a,x 2.71 ± 0.08c,y 14.1 ± 0.1 b,x 

Data are means ± SD, n = 9. 
a, b, c and d show significant differences (P < 0.05) between different composting turning days for the same compost. 
x and y show significant differences (P < 0.05) between different composts for the same composting turning day. 
*Abbreviations: SA, sawdust + cow manure; ST, straw + cow manure; D0, day0; D10, day10; D20, day20; D30, day30. 
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(15.38%), Acaulium (9.93%), and Ophiostoma (9.22%) dominated 
(Fig. 4B). In both composts, we found that the relative abundance of 
Acaulium increased by 5-fold by the end of composting (Fig. 4B). 

Fig. 1. Differences in total sugar (A), reducing sugar (B), cellulose (C), and hemicellulose (D) between SA and ST composts over the composting days. Data are means 
± SD, n = 9. SA, sawdust + cow manure; ST, straw + cow manure. 

Fig. 2. Variations in activity of cellulase (A), neutral xylanase (B), Mn-dependent peroxidase (C), and laccase (D) and their differences between SA and ST composts 
over the composting days. Data are means ± SD, n = 9. SA, sawdust + cow manure; ST, straw + cow manure. 
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3.4. Correlations between microbial communities and environmental 
variables 

For the bacterial community in manure-sawdust (SA) compost, 
hemicellulose and total carbon and nitrogen contents (TC and TN) 
explained ~80% of the bacterial community variation (Fig. 5A, 
Fig. S6A). However, NO3

− -N was the most significant driver during 
manure-straw (ST) composting, contributing ~40% of the total variance 
(Fig. 5A, Fig. S6B). By comparison, ~80% of the variation in fungal 

community composition was explained by RDA (Figs. S5C and D). For 
both composts, NO3

− -N was the most significant factor (Fig. 5B) and 
contributed ~40% of the total variance in fungal community variation 
during the composting process (Figs. S6C and D). 

Fig. 3. Heatmap for correlation analyses (Pearson, |r| > 0.6) of physiochemical and biological factors in SA and ST composts. *P < 0.05, **P < 0.01 ***P < 0.001. 
SA, sawdust + cow manure; ST, straw + cow manure. 

Fig. 4. Variations in hierarchically clustered heatmaps based on the top 50 genera within bacterial (A) and fungal (B) community compositions and their differences 
between SA and ST composts over the duration of the composting period. The relative abundances of the genera are the average of triplicated MiSeq sequencing data. 
Pathogenic taxa are indicated by arrows after their names. Data are means ± SD, n = 3. SA, sawdust + cow manure; ST, straw + cow manure. 
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Fig. 5. Redundancy analyses based on the bacterial (A) and fungal (B) community composition and physicochemical variables for both SA and ST composts. 
Heatmap showing correlations between physicochemical properties and representative bacterial or fungal genera based on the Spearman correlation coefficient in 
the bacterial (C) and fungal (D) community composition. *P < 0.05, **P < 0.01, ***P < 0.001. SA, sawdust + cow manure; ST, straw + cow manure. 
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4. Discussion 

4.1. The changes of key environmental variables, enzyme activities, and 
their intrinsic links with microbial communities 

Composting is a process of humification and mineralization (Zhu 
et al., 2020). Microbial behavior and organic matter transformation are 
affected by physicochemical parameters (Guo et al., 2012; Wu et al., 
2017). 

Compost initial C/N ratio affects the degree of maturity, and the 
succession of dominant microbes (Guo et al., 2012; Zhang et al., 2020). 
In our study, the cow-manure C:N ratio was relatively lower (15) as 
compared with other studies (~25). It may have some potential draw-
backs such as slower heating rate, a lower maximum temperature and a 
shorter thermophilic period (Eiland et al., 2001; Zhu, 2007; Guo et al., 
2012; Zhang et al., 2020). However, we observed that the average 
maximum temperature of manure-straw and manure-sawdust in the 
thermophilic phase reached 72 ◦C and 57 ◦C, respectively, and lasting 
6–8 days (Fig. S1). This was in line with the requirements of harmless 
sanitation (>50 ◦C, 5–10 days) of aerobic manure composts (Zhang 
et al., 2021b; Vinnerås, 2013). In addition, Miyatake and Iwabuchi 
(2005) observed the highest level of thermophilic bacterial activity at 
54 ◦C. Economic analyses showed that a lower initial-C/N, rather than a 
higher-C/N, reduces the weight of straw used per ton of fresh manure, 
and therefore, more manure can be treated (Zhu, 2007; Vinnerås, 2013; 
Zhang et al., 2021). Moreover, the removal efficiency of antibiotic 
resistance genes in low C/N compost was higher than that in high C/N 
compost (Zhu et al., 2021b). Therefore, in this case, our work provides a 
new co-composting pathway for the harmless treatment of lower C/N 
cow manure and agroforestry biowastes. 

Changes in composting pile core temperature are commonly caused 
by the activities of microorganisms, human disturbance, and exothermic 
ammonium nitrogen conversion (Liang et al., 2003; Goyal et al., 2005; 
Zhu et al., 2020). Compared to the initial stage, the total N content in the 
mature stage of manure co-composting was reduced, indicating a po-
tential change in N form, as the main organic N can be assimilated by 
N-recycling microorganisms, or converted to ammonia, nitrogen oxides, 
protein nitrogen, and NO3

− -N (Maleki et al., 2022). We further found that 
these N changes were closely related to specific microbial activities, as 
confirmed by a significant positive relationship between TN and N-fixing 
Pseudomonas (Fig. 5C). In both types of cow manure co-composting, the 
NH4

+-N content was stable, but the NO3
− -N content accumulated. Based 

on the relationships among NO3
− -N, cellulase activity, and cellulose 

concentration, our results indicated that the accumulation of NO3
− -N was 

closely associated with cellulose breakdown over the duration of com-
posting, which can be closely related to i) a continuous process of 
organic matter decomposition and utilization by C-degrading microor-
ganisms (Hao et al., 2005); and ii) improved physicochemical proper-
ties, porosity, and oxygen concentration in co-composting piles which 
enhances nitrifying bacterial activity (Maleki et al., 2022). Apart from 
bacteria taxa, in our cow manure co-composting system, NO3

− -N was also 
an important factor affecting the change in fungal community structure. 
This was in accordance with Meng et al., (2019) who reported that 
fungal communities are strongly associated with N transformation and 
contributed to major variation in fungal community composition (Guo 
et al., 2012; Zhu et al., 2020). 

In our study, there was a steady decrease of readily available C- 
fractions (total sugar and reducing sugar) and relatively recalcitrant 
cellulose over composting. Changes in sugar consumption during com-
posting have also been reported by Wu et al., (2017), and decreases are 
accompanied by increases in lignin-degrading enzyme activities (laccase 
and peroxidase) in our case. Laccase is the most ubiquitous enzyme 
produced by white-rot fungi, and peroxidase is involved closely in lignin 
degradation, biobleaching, and oxidation of hazardous organic pollut-
ants (Jarosz-Wilkolazka et al., 2007). As straw contains a higher C 
content, laccase and peroxidase activity are significant variables 

affecting fungal communities during cow manure-straw composting. 
Lignocellulose-degrading microbes favor high temperatures; those that 
produce C-degrading enzymes targeting hemicellulose (neutral xyla-
nase), cellulose (cellulase), and lignin (laccase and Mn-dependent 
peroxidase) are active under high temperatures (Chefetz et al., 1998; 
Pérez et al., 2002). This phenomenon may be associated with enhanced 
activities of these C-compound-degrading enzymes under high temper-
atures (Chefetz et al., 1998; Pérez et al., 2002), because cellulase (cel-
lulose-degrading), laccase and peroxidase (lignin-degrading) activity 
had significantly positive relationships with composting temperature in 
our study. Overall, changes in the above compost properties are also 
drivers of succession events in both the bacterial community and fungal 
composition (Guo et al., 2012; Neher et al., 2013; Antunes et al., 2016). 

4.2. Variations in bacterial and fungal communities throughout the cow 
manure co-composting processes 

Cow manure composting was dominated by widely-known types 
assigned to Proteobacteria, Bacteroidetes, Firmicutes. This was closely 
associated with their roles in organic matter mineralization (Li et al., 
2020c) and compost humification (Steger et al., 2007a, 2007b; Zhao 
et al., 2016). Due to the differences in initial substrate C:N ratio (Straw 
vs. Sawdust), major bacterial genera varied significantly, but the 
N-fixing genus Pseudomonas remained dominant. This phenomenon may 
be linked to their beneficial roles in improving compost quality (Marcel 
et al., 2018; Wang et al., 2020). The co-composting of cow manure and 
agroforestry biowaste constructed in our study possessed a low C:N ratio 
which remained stable (~15) throughout composting. Fungal de-
composers targeting recalcitrant lignocellulose content had a low 
abundance. Instead, we found that Acaulium strongly contributed to the 
degradation of easily-utilized total sugar and cellulose (Sandoval-Denis 
et al., 2016) and was abundant in all composts. Other abundant fungal 
taxa seem to play important roles in collaboration with Acaulium. For 
instance, Luteimonas, Pseudallescheria, Thermobifida, and Trichoderma 
produce cellulase and hemicellulase, accelerating cellulose decomposi-
tion (Nsereko et al., 2002; Zhang et al., 2016; Tian et al., 2017). 
Furthermore, the fungal community tended to vary substantially at 
various composting stages. We found Pichia and Wickerhamomyces were 
the dominant fungal genera in the initial stage, which was in line with 
other cow manure co-composting (Wang et al., 2014). The fungal genera 
shifted in the thermophilic stage to Alternaria, Dipodascus, Remersonia, 
Talaromyces, and Thermoascus, which were also detected in other studies 
(Ghaly et al., 2011; Neher et al., 2013; Sun et al., 2015; Xu et al., 2019). 
Fungi are resistant to stress, but very high humidity, excess ventilation, 
and artificial agitation are not conducive to fungal growth and repro-
duction (Ryckeboer et al., 2003). In general, most of the fungi in the 
composting system belong to mesophilic and thermophilic fungi, and 
their optimal growth temperatures ranged between 25 and 70 ◦C 
(Tuomela et al., 2000). Compared with the thermophilic stage, Asco-
mycetes proliferated significantly during the cooling and maturity stages 
(Fig. 4) (Neher et al., 2013; Sun et al., 2015; Meng et al., 2019). Our 
study demonstrates the characteristics of fungal and bacterial commu-
nities and their impact on low C:N ratio cow manure and agroforestry 
biowaste co-composting. 

4.3. Microbial health and safety risks involved in the cow manure co- 
composting processes 

Raw material types with varied C-additives structured distinct bac-
terial and fungal community taxa during the process of composting, 
driving us to seek more details in microbial risk to human health and 
safety during composting, especially for those involved in livestock 
manure (Yue et al., 2022; Chen et al., 2022). It is worth noting that 
pathogenic bacteria such as Acinetobacter, Chryseobacterium, and Cory-
nebacterium_1 gradually decreased during the composting process 
(Fig. 4, Fig. S4A). Consistent with these bacteria, fungal pathogens such 
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as Aspergillus, Candida, Fusarium, Ophiostoma, and Zopfiella also dimin-
ished with composting time. The relative abundance of the main path-
ogens gradually decreased with the increase of compost temperature 
(Figs. 4 and 5, Figs. S4 and S7), indicating their reduction at high tem-
perature during a thermophilic stage (Dumontet et al., 1999). Numerous 
studies have revealed that manure fertilizers are also one of the most 
abundant sources of microbial contamination, including antibiotic 
resistance genes (ARGs) (Yue et al., 2022; Chen et al., 2022). In this 
study, eight types of ARG were detected in two typical cow manure 
co-composts (Fig. S7). Among them, multidrug-resistant genes were the 
most abundant, and these genes are widely present in livestock feces due 
to the usage of antibiotics (Mackie and Yannarell, 2009; You and Sil-
bergeld, 2014). This risk is greatly enhanced in certain other 
geographical settings, for example in complex pasturelands or agricul-
tural ecosystems that are simultaneously exposed to other anthropo-
genic disturbances such as mine drainage, wastewater spills, and other 
hazardous industrial/municipal effluent-discharges, etc. (Hlava et al., 
2017; Koley, 2022). The idea of safe co-composting of cow manure and 
contaminated Agri-byproducts would require additional study of the 
impact of heavy-metals and metalloids that may leach into groundwater 
or undergo biotic volatilizations, thereby proving to be hazardous to the 
general population of a region in a secondary manner (Koley, 2022; 
Mukherjee et al., 2022). In this context, assimilating further chemical 
stabilization methods, and subsequent analysis of the microbial com-
munities, would be important as the future scope of this subject. 

5. Conclusion 

In summary, during this study the succession and response of key 
bacterial and fungal taxa to environmental variables during cow manure 
co-composting with C additives from agroforestry biowastes (straw/ 
sawdust) were captured in detail. As a case study, we observed that the 
presence of pathogenic bacteria (Acinetobacter, Chryseobacterium, and 
Corynebacterium_1) and fungal pathogens (Aspergillus, Candida, Fusa-
rium, Ophiostoma, and Zopfiella) gradually decreased, especially during 
the thermophilic stage. Nitrate N was identified as an important factor 
for structuring the bacterial and fungal communities, in conjunction 
with C-degrading enzymes. As an important method for harm and risk 
reduction treatment and for sustainable by-product resource use, co- 
composting of cow manure and agroforestry biowastes was shown to 
be beneficial for reutilization of cow manure. 
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taxonomic revision of Microascaceae with emphasis on Synnematous fungi. Stud. 
Mycol. 83 (1), 193–233. https://doi.org/10.1016/j.simyco.2016.07.002. 

Savoie, J.M., Libmond, S., 1994. Stimulation of environmentally controlled mushroom 
composting by polysaccharidases. World J. Microbiol. Biotechnol. 10 (3), 313–319. 
https://doi.org/10.1007/BF00414871. 

Schumacher, E., Dindorf, W., Dittmar, M., 2009. Exposure to toxic agents alters organic 
elemental composition in human fingernails. Sci. Total Environ. 407 (7), 2151–2157. 
https://doi.org/10.1016/j.scitotenv.2008.12.013. 
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