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Summary

� We aimed to identify genomic traits of transitions to ectomycorrhizal ecology within the

Boletales by comparing the genomes of 21 symbiotrophic species with their saprotrophic

brown-rot relatives.
� Gene duplication rate is constant along the backbone of Boletales phylogeny with large loss

events in several lineages, while gene family expansion sharply increased in the late Miocene,

mostly in the Boletaceae.
� Ectomycorrhizal Boletales have a reduced set of plant cell-wall-degrading enzymes

(PCWDEs) compared with their brown-rot relatives. However, the various lineages retain dis-

tinct sets of PCWDEs, suggesting that, over their evolutionary history, symbiotic Boletales

have become functionally diverse. A smaller PCWDE repertoire was found in Scleroder-

matineae. The gene repertoire of several lignocellulose oxidoreductases (e.g. laccases) is simi-

lar in brown-rot and ectomycorrhizal species, suggesting that symbiotic Boletales are capable

of mild lignocellulose decomposition. Transposable element (TE) proliferation contributed to

the higher evolutionary rate of genes encoding effector-like small secreted proteins, pro-

teases, and lipases. On the other hand, we showed that the loss of secreted CAZymes was

not related to TE activity but to DNA decay.
� This study provides novel insights on our understanding of the mechanisms influencing the

evolutionary diversification of symbiotic boletes.

Introduction

In forest soils, wood decayers, litter/soil decomposers, and ecto-
mycorrhizal fungi form entangled networks of mycelia that

compete for nutrient resources. A major part of soil carbon (C)
and nitrogen (N) organic compounds is stored in forest biomes
as wood and soil organic matter (SOM). Decomposition of these
resources is thought to be mainly driven by fungal wood decayers
and soil/litter saprotrophs (Baldrian et al., 2012). These
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functional guilds of fungi play a major role in C recycling and
sequestration, as well as of other nutrients, from plant litter and
dead bacterial, fungal, and animal materials. In addition, ectomy-
corrhizal symbionts impact SOM decomposition by competing
with saprotrophs and regulate the input of plant-related C com-
pounds into soil microbial communities. Deciphering how N
acquisition and SOM decomposition potentials differ in sapro-
trophic and symbiotrophic fungi can provide insight into the
underlying mechanisms driving fungal ecological processes and
ecosystem functioning (Peay et al., 2016). Describing how trait
variation and the gene copy number of key proteins involved in
SOM decomposition and mycorrhizal symbiosis (e.g. signaling
pathways) vary across functional guilds is shedding light on
potential evolutionary trajectories of life-history traits in forest
fungi (Lebreton et al., 2021).

In the most comprehensive phylogenetic analysis on evolution
of ectomycorrhizal fungi in Agaricomycetes carried out to date,
36 origins of ectomycorrhizal lineages were found (S�anchez-
Garc�ıa et al., 2020). Large-scale studies of mycorrhizal genomes
have shown that ancestors of ectomycorrhizal fungi were geneti-
cally and ecologically diverse, being white rots, brown rots, or
soil/litter saprotrophs (Kohler et al., 2015; Miyauchi et al., 2020;
Lebreton et al., 2021). Though tens to hundreds of millions of
years separate the independent evolution of ectomycorrhizal sym-
bioses in Endogonales, Ascomycota, and Basidiomycota, they
share remarkable phenotypic and metabolic similarities. The
polyphyletic evolution of the ectomycorrhizal lifestyle is marked
by the convergent, near complete loss of core cellulose and
lignin-acting carbohydrate-active enzymes (CAZymes), such as
ligninolytic peroxidases (class II PODs), cellobiohydrolases of
glycosyl hydrolase (GH) families 6 and 7, and cellulose-binding
modules found in the ancestral decomposition apparatus of their
saprotrophic ancestors. Nevertheless, many of the ectomycor-
rhizal symbionts investigated have kept a unique array of plant
cell-wall-degrading enzymes (PCWDEs), including endoglu-
canases (GH5), pectinases (GH28), and oxidoreductases/laccases
(AA1, AA9), thus suggesting that they possess diverse abilities to
scavenge plant and microbial detritus from the soil/litter. Finally,
transposable elements (TEs) and mycorrhiza-induced small
secreted proteins (MiSSPs) tend to be enriched in ectomycor-
rhizal genomes (Pellegrin et al., 2015; Miyauchi et al., 2020;
Lebreton et al., 2021).

With the increasing number of fungal genomes available, it is
becoming more feasible to trace the evolutionary events defining
the origin of ectomycorrhizal symbiosis within a specific fungal
lineage. Functional traits – such as gene copy numbers for
PCWDEs, N and phosphate acquisition pathways, MiSSPs, and
TEs – within a fungal family across functional guilds (e.g. sapro-
trophs vs symbiotrophs) have been investigated within the Aman-
itaceae, Endogonaceae, Russulaceae, Suillaceae, and Tuberaceae
(Hess et al., 2018; Murat et al., 2018; Chang et al., 2019; Lofgren
et al., 2021; Looney et al., 2021). These studies have shown that
the aforementioned hallmarks of the ectomycorrhizal ecology are
recapitulated at the family level, although idiosyncrasies have
been identified in each of these fungal families, e.g. a significant
enrichment of terpene synthetase and nonribosomal peptide

synthetase (NRPS)-like secondary metabolism clusters in ectomy-
corrhizal Suillus species.

The order Boletales is among the most species-rich orders in
the Agaricomycetes and includes five suborders (i.e. Boletineae,
Sclerodermatineae, Suillineae, Coniophorineae, and Tap-
inellineae) and 16 families. Among them, nearly two-thirds of
the species are affiliated to the iconic ectomycorrhizal Boletaceae
family, as a result of their rapid evolutionary diversification with
their coevolving angiosperm hosts (Grubisha et al., 2001; Binder
& Hibbett, 2006; Drehmel et al., 2008; Kirk et al., 2008;
Dentinger et al., 2010; Sato & Toju, 2019). Species in the subor-
ders Boletineae, Sclerodermatineae, and Suillineae establish sym-
biotic associations with diverse host plants (Newman & Reddell,
1987; Bougher, 1995; Henkel et al., 2002; den Bakker et al.,
2004; Sato et al., 2007; Hosen et al., 2013; Nuhn et al., 2013;
Wu et al., 2014, 2016). On the other hand, species in the subor-
ders Coniophorineae and Tapinellineae are brown-rot fungi that
grow on dead wood. No white-rot species are known in Boletales,
and the most recent common ancestor (MRCA) of Boletales was
presumably a brown-rot fungus (Ruiz-Due~nas et al., 2020).
However, the mode of nutrition in several Boletinellaceae genera,
such as Phlebopus and Boletinellus, is still elusive (Binder & Hib-
bett, 2006; Tedersoo & Smith, 2013; Sato & Toju, 2019). For
example, both the 13C/15N isotopic signature of the basidiocarps
from Phlebopus portentosus (Berk. & Broome) Boedijn and the
ability of its soil mycelium to establish ectomycorrhiza-like struc-
tures with Pinus kesiya support a symbiotrophic mode of nutri-
tion (Pham et al., 2012; Kumla et al., 2016). On the other hand,
the free-living mycelium of P. portentosus is able to produce
basidiocarps in the absence of any host tree (e.g. in pots) (Ji et al.,
2011), suggesting a substantial saprotrophic ability to sustain the
massive demand for C compounds required by fruiting body
construction. These contrasted ecological features suggest that
these Boletinellaceae have not fully transitioned to the sym-
biotrophic lifestyle. Symbiotic Boletales bear several ecologically
relevant attributes that warrant study in a genomic context, such
as their abundance in temperate, subtropical, and tropical ecosys-
tems (Heinemann, 1951; Corner, 1972; Bessette et al., 2000;
Mu~noz, 2005; Zang, 2006), their late-stage fruiting in forest suc-
cessions (Ortega-Mart�ınez et al., 2011), the production of unique
volatile organic compounds (Rapior et al., 1997), and an acceler-
ated evolutionary rate of speciation, morphological transition,
and host expansion (Wu et al., 2016; Sato & Toju, 2019).

To address a number of hypotheses on the evolution of ecto-
mycorrhizal symbioses from brown-rot ancestors and trophic
ecology in the various Boletales families, we sequenced, anno-
tated, and compared the genomes of 28 Boletales species, includ-
ing seven newly sequenced genomes from species found in
subtropical and tropical forests. This study had four main objec-
tives. First, to generate a robust phylogenomic framework for the
Boletales order. Second, to determine whether the genomes of
symbiotrophic Boletales show signatures of the ectomycorrhizal
ecology, including large genome size due to TE expansions,
reduction in the diversity of PCWDEs, and diversification of
small secreted protein (SSPs) that might function in the mycor-
rhizal symbiosis. Third, to infer the contribution of TE
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expansion to gene innovation/decay of PCWDEs and SSPs; and
fourth, to characterize the gene repertoire and transcript profiling
of the Boletinellaceae P. portentosus, having a dual saprotrophic/
symbiotrophic lifestyle. By comparing genomes of saprotrophic
and symbiotic species, we reveal the genetic basis for their con-
trasted lignocellulose and protein-degrading abilities. We also
identify major differences in their repertoire of secondary
metabolism enzymes, and we assess the conservation of
symbiotic-related traits in this fungal order. Finally, we showed
that the genomes of Phlebopus species have a symbiotrophic sig-
nature.

Materials and Methods

Fungal material, genome sequencing, assembly, and
annotation

Fungal strains used for genome sequencing are described in Sup-
porting Information Table S1. Genomic DNA was extracted
with a modified cetyltrimethylammonium bromide protocol, as
described in Kohler et al. (2015).

The genome of Boletus reticuloceps (M. Zang et al.) Q.B. Wang
& Y.J. Yao (strain BR01), Butyriboletus roseoflavus (Hai B. Li &
Hai L. Wei) D. Arora & J.L. Frank (strain LA02), Lanmaoa asi-
atica G. Wu & Zhu L. Yang (strain LA01), and Chiua virens
(W.F. Chiu) Y.C. Li & Zhu L. Yang (strain LA06) were
sequenced for this study using the Pacific Biosciences (PacBio)
Sequel platform at Nextomics Biosciences (Wuhan, China).
Library construction, genome sequencing, genome assembly, and
gene annotation were carried out using the company standardized
pipeline. Detailed information is provided in Methods S1-1. The
genome of Phlebopus sp. (strain FC_14), Leucogyrophana mollusca
(Fr.) Pouzar (strain KUC20120723A-06), and Hygrophoropsis
aurantiaca (Wulfen) Maire (strain ATCC 28755) were
sequenced for this study at the Joint Genome Institute (JGI)
using the PacBio Sequel or Illumina HiSeq sequencing plat-
forms.

Additional information on methods used for genome sequenc-
ing, genome assembly, and gene prediction is provided in Meth-
ods S1-1. Note that we performed a stringent quality control to
avoid any spurious contaminating sequences in the genome
assemblies (see Methods S1-1).

Organismal phylogeny

We retrieved protein sequences from the Boletales portal at the JGI
MycoCosm database (https://mycocosm.jgi.doe.gov/boletales/
boletales.info.html) and Nextomics Biosciences (Wuhan, China). A
phylogenomic tree was constructed using 28 species of Boletales,
two of Atheliales, one of Amylocorticiales, and one of Agaricales.
Two Polyporales and allied species were chosen as an outgroup:
Polyporus brumalis (Pers.) Fr and Cristinia sonorae Nakasone &
Gilb. We used 434 highly conserved protein coding genes that
have previously proved useful for higher level phylogenetic analysis
of fungi (Beaudet et al., 2018; https://github.com/1KFG/
Phylogenomics_HMMs, JGI_1086 set), for phylogenomic analyses

with the PHYLING pipeline (https://github.com/stajichlab/
PHYling_unified) with the default settings. Out of the 434 con-
served orthologous markers, 430 were identified in our data set with
hmmsearch (cutoff: 1910�10). The protein sequence homologues
identified in each species, for each phylogenetic marker, were
aligned with hmmalign to the marker profile hidden Markov
model. Both programs belong to the HMMER package (v.3.3, Eddy,
2011). The protein alignments were concatenated into a superalign-
ment with 430 partitions defined by each gene marker. To select
the best-fit amino acid substitution models for each partition, we
used MODELTEST-NG (v.0.1.6; Darriba et al., 2019). A maximum
likelihood inference for our phylogenomic data set was achieved
with RAXML-NG (v.0.9.0; Kozlov et al., 2019) using a partitioned
analysis and 1000 bootstraps replicates.

Time-calibrated phylogeny

To calibrate the organismal phylogeny, we used the mcmctree
method implemented in PAML (v.4.8; Yang, 2007) with the
independent-rates clock model, a Whelan and Goldman (WAG)
substitution model, and approximate likelihood calculation. For
each gene we estimated the substitution rate with codeml using
the corresponding gene alignment and the following parameters:
clock = 1, model = 2, aaRateFile = wag.dat, getSE = 0, and
Small_Diff = 1e7. We then set the time unit to 100 million years
(Myr) and applied uniform priors on two fossil calibrations with
lower and upper hard bounds. The fossil of a suilloid ectomycor-
rhizal root tip from the middle Eocene (40–60Ma (million years
ago); LePage et al., 1997; Varga et al., 2019) was used to calibrate
the node containing the suborder Suillineae, and a quite relaxed
secondary calibration point was set to the Boletales MRCA using
the estimated stem age of Boletales (mean: 218Ma; 95% highest
posterior density (HPD): 84–279Ma) from Han et al. (2018)).
We also constrained the age of the root to be < 500Ma.

Genome synteny and rearrangement analysis

For assessing the genome synteny, we used the 10 largest scaffolds
of the genome assemblies with the highest contiguity and com-
pleteness, mainly from Boletineae species. We excluded the four
Boletineae genomes having the highest assembly fragmentation:
Xerocomus badius (� Imleria badia) (Xarba1), Paxillus ammoni-
avirescens (Paxam1), Paxillus adelphus (Paxru1), and Melanogaster
broomeianus (Melbro1; Fig S2). Then, we identified syntenic
blocks using a custom script, Synteny Governance Overview
(SynGO), incorporating the R packages DECIPHER and CIRCLIZE

(Gu et al., 2014; Wright, 2015; Hage et al., 2021). We measured
the mean TE-to-gene distances with statistical support with the R
package REGIONER (Gel et al., 2016). Macrosynteny with com-
bined genomic features among the selected species was visualized
and evaluated with a custom script, Visually Integrated Numer-
ous Genres of Omics (VINGO), incorporating the R package
KARYOPLOTER (Gel & Serra, 2017; Looney et al., 2021). We
assessed and displayed associations between TEs and genes using
the R packages VEGAN (Oksanen et al., 2019) and PCATOOLS

(Blighe & Lun, 2020).
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Analysis of gene evolution using COMPARE pipeline

An all-vs-all search of whole proteomes of 34 species (Table 1)
was performed using MPIBLAST 1.6.0 (Darling et al., 2003) with
50% bidirectional coverage filter and an e-value cutoff of 10�5.
Proteins were then clustered using the Markov cluster (MCL)
algorithm (van Dongen, 2000) with an inflation parameter 2.0.
MCL clusters of protein sequences were aligned using MAFFT

7.4.07 (Katoh & Standley, 2013) with the –LiNSI algorithm and
trimmed using TRIMAL 1.4 with parameter –gt 0.2. Maximum
likelihood gene trees for each cluster and Shimodaira–Hasegawa-
like branch support values were inferred using the PTHREADS ver-
sion of RAXML 8.2.12 (Stamatakis, 2014) under the
PROTGAMMAWAG model. Next, we reconciled the rooted
gene trees with the species tree using NOTUNG 2.9 (Chen et al.,
2000) with an edge-weight threshold of 0.95. We reconstructed
the duplication/loss history of all protein clusters across the
species tree using the COMPARE pipeline (Nagy et al., 2014,
2016). Duplication and loss rates were computed by dividing the
number of inferred duplication and loss events by the length of
the respective branch of the species tree. Rates through time plots
were created as follows: the time interval of the tree was divided
into bins (100 sections) and in each bin the average rate was cal-
culated. Gene families were functionally characterized using
InterPro annotations. We performed an InterPro search using
INTERPROSCAN-5.36-75.0 (Jones et al., 2014) with the ‘goterms’
argument. Cluster-based Gene Ontology (GO) enrichment anal-
ysis was carried out by using the TOPGO v.2.38.1 package
(Alexa & Rahnenfuhrer, 2020) with the weight01 algorithm
(Alexa et al., 2006) and Fisher’s exact test. Graphical maps of
gene duplication/loss histories were generated using custom
scripts in R.

Results

Genome features and phylogenetic analysis

The nuclear genome of four symbiotrophic Boletaceae (B. reticu-
loceps, B. roseoflavus, L. asiatica, and C. virens), a dual sym-
biotrophic/saprotrophic Boletinellaceae (Phlebopus sp. FC_14),
and two saprotrophic Hygrophoropsidaceae (H. aurantiaca and
L.mollusca) were newly sequenced, de novo assembled, and
annotated (Table S1) for this study. These genomes were then
compared with available sequenced genomes of Boletales in
Paxillaceae, Sclerodermatineae, Suillineae, Coniophoraceae, and
Serpulaceae (Tables 1, S2). In Boletales, the genome size ranges
from 30Mbp for P. portentosus to 71Mbp for Pisolithus tinctorius
(Fig. 1b; Table 1). The completeness of these genome assemblies
varies from 83.1% to 99.7% according to their benchmarking
universal single-copy orthologues (BUSCO) scores with < 5%
missing BUSCO genes (Fig. 1b; Table 1). By combining
homologue-based, ab initio, and transcriptome-based approaches,
9749 (P. portentosus) to 22 701 (Pi. tinctorius) protein-coding
genes were predicted for these genomes (Fig. 1b; Table 1).

A maximum likelihood phylogenetic analysis, based on the
concatenated amino acid sequence alignment of 430 conserved,

orthologous proteins of Boletales and related Atheliales/Amylo-
corticiales species (Fig. 1a) corroborated and extended previous
phylogenetic topologies (Binder et al., 2010; Kohler et al., 2015;
Sato & Toju, 2019). We showed that Hydnomerulius pinastri, a
brown-rot species, is clustered with ectomycorrhizal Boletineae
and Boletinellaceae, a family with a dual symbiotrophic/sapro-
trophic ecology. The Hygrophoropsidaceae was confirmed as the
sister lineage of the main clade comprising Boletineae, Scleroder-
matineae, and Suillineae (Fig. 1a). The estimated age of the
MRCA of Boletales was 151Ma (95% HPD: 112–183Ma) in
the Late Jurassic (Fig. 1a) according to our Bayesian molecular
clock dating. The inferred ages were similar to previous estimates
(146Ma, Zhao et al., 2017; 142Ma, Varga et al., 2019).

Genomes of ectomycorrhizal Boletales have a higher load
in transposable elements

Ectomycorrhizal fungi have the largest genomes with a signifi-
cantly higher TE content compared with their brown-rot relatives
(Figs 1b, 2; Tables S3–S5; P < 0.05 for TEs; pairwise permuta-
tional multivariate ANOVA (PERMANOVA)). TE content
ranges from 3.8% (Coniophora olivacea) to 50.3% (Pa. adelphus)
of the genome assembly (Fig. 1b; Tables 1, S2). The genome size
variation was largely explained by the fungal lifestyle (29.3%;
Fig. 2; P < 0.05; PERMANOVA; Table S4). Among the known
TEs, Gypsy and Copia long terminal repeat (LTR) retrotrans-
posons are widely distributed in Boletales and massively
expanded in ectomycorrhizal species with lineage-specific features
(Figs 3, S1; Table S6). Notably, there is an unexpectedly high
copy number of Gypsy, Copia, and EnSpm/CACTA in Gyrodon
lividus, an alder-specific symbiont. Lanmaoa asiatica genome
encodes a very high number of Copia, Gypsy, hAT, and Mariner
elements, whereas C. virens has a high content in Copia,
Harbinger, Academ, and Kolobok families. In contrast to other
brown-rot Boletales, Serpula himantioides and Serpula lacrymans
genomes encode expanded TE repertoires, enriched in Gypsy and
Copia LTR retrotransposons (Figs 1b, S1; Table S6). The Kimura
distance-based copy divergence showed that TE copies prolifer-
ated in the recent historical period in most Boletales species, espe-
cially in the ectomycorrhizal symbionts (Fig. 3). Furthermore, a
various set of TE families accumulated in very recent time in
Bu. roseoflavus, C. virens and Suillus luteus, whereas L. asiatica and
Paxillus involutus showed two bursts of TE proliferation (Fig. 3).
Although TE invasion, proliferation, and decay took place at a
different pace in the various species, it appears that the symbiotic
lifestyle is correlated to a higher TE accumulation.

Genomic synteny and rearrangements

We restricted the genome synteny analysis to the top 10 largest
scaffolds, with the highest contiguity and completeness, including
> 50% of the genome assembly and capturing more than one-third
of secreted CAZyme coding genes (Fig. S2; Table S7). As expected,
the genomes of the European isolates P�rilba and BED4 of Boletus
edulis share very similar gene repertoires (18 722 and 18 123 genes,
Figs 1b, 4). Together with the phylogenetically related
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B. reticuloceps, they present the highest proportion of syntenic
regions (Figs 5a,b, S3, S4). The genome synteny is, however, dis-
rupted by numerous TE sequences, suggesting that TE activity
reshuffled large parts of these closely related Boletus genomes
(Figs 5a,b, S5–S9). The length of syntenic regions decreased with
increased phylogenetic distances (Fig. S4). Scaffolds 2 and 5 of
B. edulis (Boled5) still share many syntenic regions with other Bole-
tales genomes (Figs S6, S7, S9). The CAZyme gene order is well
conserved amongst species, but several inversions took place (e.g.
between Pa. involutus (Paxin1), H. pinastri (Hydpi1), and P. por-
tentosus (Phlpo1)). Intriguingly, gene insertions or inversions were
often observed in TE-rich regions (e.g. the genes coding for
AA3_2, EXPN, GH128, and GT2 labelled in orange (Figs S6–S8),
suggesting that TE insertions played a key role in these events).

Of note, we found that genes coding for proteases, lipases, and
SSPs are closer to the nearest TEs than the random expectation
(Fig. 5c; Table S8). Multivariate and ordination analyses further

indicated that unclassified TE sequences are significantly associ-
ated with gene counts for chitin synthase (GT2) and SSP genes
in ectomycorrhizal genomes (Tables 2, S9; Fig. S10).

A hallmark of the genome evolution in ectomycorrhizal species
is the dramatic loss of genes encoding CAZymes acting on plant
cell wall polysaccharides in most species. We thus investigated
the microsynteny of several CAZyme genes to track down the
underlying mechanism(s) leading to gene loss. We found that the
conservation of the nucleotide sequences of protein-coding genes
framing the CAZyme genes – such as the cellobiohydrolase GH6
(Fig. S11), but also cellobiohydrolase (GH7), endoglucanases
(CBM1-GH5_5), and xyloglucanase (GH74-CBM1) (data not
shown) – is highly conserved with no apparent disruption by TE
sequences. It appears that the loss of these genes in ectomycor-
rhizal Boletales involved the accumulation of discrete nucleotide
mutations, the so-called DNA decay process also observed in
Tuberaceae (Murat et al., 2018).

Table 1 Taxonomic affiliation, brief genomic features and statistics for the 34 included genomes.

Species name

JGI assembly
ID/species
abbreviation Ecology

Genome
size (nt) Total genes

Total
scaffolds

Scaffold
N50

Scaffold
L50 (Mbp)

BUSCO
(%)a

Boletus edulis Boledp1 EcM 69 185 680 18 123 478 40 0.38 0.855
Boletus edulis Boled5 EcM 66 525 535 18 722 594 29 0.42 0.895
Boletus reticuloceps Bolret1 EcM 55 835 099 15 643 127 18 1.11 0.846
Xerocomus badius (� Imleria badia) Xerba1 EcM 38 390 415 14 938 1390 110 0.09 0.891
Lanmaoa asiatica Lanmao1 EcM 46 638 294 14 118 112 8 2.45 0.870
Butyriboletus roseoflavus Butyri1 EcM 33 976 981 12 051 67 6 2.7 0.861
Chiua virens Chivi1 EcM 48 496 802 13 144 149 10 1.93 0.845
Paxillus ammoniavirescens Paxam1 EcM 35 762 581 13 473 1194 84 0.09 0.909
Paxillus involutus Paxin1 EcM 58 301 126 17 968 2681 29 0.38 0.881
Paxillus adelphus Paxru2 EcM 64 458 135 18 999 1671 165 0.11 0.905
Gyrodon lividus Gyrli1 EcM 43 048 674 11 779 369 14 1.16 0.903
Melanogaster broomeianus Melbro1 EcM 49 614 189 14 167 1176 63 0.2 0.819
Hydnomerulius pinastri Hydpi1 Brown rot 38 278 792 13 270 603 16 0.69 0.905
Phlebopus portentosus Phlpo1 Dual symbiotrophic/

saprotrophic
30 352 192 9467 108 8 1.45 0.907

Phlebopus sp. PhlFC14_2 Dual symbiotrophic/
saprotrophic

37 508 415 9249 354 8 1.57 0.897

Pisolithus tinctorius Pisti1 EcM 71 007 534 22 701 610 36 0.49 0.894
Pisolithus microcarpus Pismi1 EcM 53 027 657 21 064 1064 89 0.15 0.863
Scleroderma citrinum Sclci1 EcM 56 144 862 21 012 938 63 0.24 0.909
Rhizopogon vinicolor Rhivi1 EcM 36 102 320 14 469 2310 218 0.04 0.905
Rhizopogon vesiculosus Rhives1 EcM 43 809 644 14 218 6700 388 0.03 0.900
Suillus brevipes Suibr2 EcM 52 027 859 21 458 1550 84 0.16 0.913
Suillus luteus Suilu4 EcM 44 486 502 16 588 67 10 1.39 0.903
Hygrophoropsis aurantiaca Hygaur1 Brown rot 36 975 565 14 285 2305 169 0.05 0.888
Leucogyrophana mollusca Leumo1 Brown rot 35 193 237 14 619 1262 108 0.09 0.915
Coniophora olivacea Conol1 Brown rot 39 071 688 14 928 863 80 0.14 0.914
Coniophora puteana Conpu1 Brown rot 42 968 544 13 761 210 7 2.4 0.912
Serpula himantioides Serla_varsha1 Brown rot 45 978 785 13 805 4893 554 0.02 0.831
Serpula lacrymans SerlaS7_9_2 Brown rot 42 734 799 12 789 36 6 2.95 0.922
Fibulorhizoctonia sp. Fibsp1 Other saprotrophic 95 125 689 32 946 1918 98 0.29 0.923
Piloderma croceum Pilcr1 EcM 59 326 866 21 583 715 33 0.53 0.914
Plicaturopsis crispa Plicr1 White rot 34 498 416 13 626 316 7 1.83 0.926
Cristinia sonorae Crison1 White rot 30 130 434 11 356 114 16 0.65 0.918
Polyporus brumalis Polbr1 White rot 45 718 511 18 244 621 34 0.36 0.928
Agaricus bisporus Agabi_varbisH97_2 Soil saprotrophic 30 233 745 10 438 29 6 2.3 0.915

EcM, ectomycorrhizal; JGI, Joint Genome Institute.
aBenchmarking universal single-copy orthologues, refers to genome completeness.

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

New Phytologist (2021)
www.newphytologist.com

New
Phytologist Research 5



Core, dispensable, and species-specific gene families in
Boletales

To compare the protein-coding gene repertoires encoded by the
sequenced Boletales and identify species-specific gene families
that might contribute to diversification of symbiosis-related traits
in ectomycorrhizal Boletales, we clustered the predicted proteins
to infer orthologous gene groups (orthogroups), including core
genes (i.e. occurring in the 28 Boletales species), dispensable
genes (i.e. found in at least two species), and species-specific
genes (i.e. unique to a taxon). Whereas the core set of conserved
genes ranged from 2291 to 2757, the repertoire of species-
specific genes varies widely, ranging from 1364 in Phlebopus sp.
FC_14 to 12 816 in Pi. tinctorius (Fig. S12a; Table S10). The
proportion of species-specific genes is much higher in Scleroder-
matineae than in Boletineae. Species-specific genes, which are
also referred to as taxonomically restricted genes, have recently
become associated with the evolution of novelty, as numerous
studies across the tree of life have now linked expression of taxo-
nomically restricted genes with novel phenotypes (Johnson,
2018). As expected, they mostly encode proteins with no known
function in the Boletales. We further identified the orthogroups,
allowing the discrimination between saprotrophs and ectomycor-
rhizal symbionts. The number of symbiont-specific orthogroups
ranges from 1347 in G. lividus to 5231 in B. edulis BED1, and
that of brown-rot-specific genes varies from 842 in H. pinastri to
3755 in Coniophora puteana (Fig. S12b; Table S11). The number
of symbiont/brown-rot-specific orthogroups tended to be

proportional to the genome size of the corresponding fungi
(Figs 1, S12b).

Diversification of the gene repertoires

The newly sequenced genomes, and more specifically the Bole-
taceae and Boletinellaceae genomes, offer a unique opportunity
to examine the evolution of bolete-related and symbiosis-
related genes and gene families across the Boletales order. Our
reconstructions of genome-wide duplication and contraction
events in Boletales revealed a considerable heterogeneity in the
temporal dynamics of genome diversification between the dif-
ferent clades (Fig. 6a). We reconstructed similar ancestral copy
numbers (12 000–13 000 genes) in ancestral nodes, with a
moderate increase from the root of the tree (Fig. 6a). In accor-
dance, net gene duplications (duplications minus losses) were
inferred to be more or less constant along the tree backbone,
with large loss events (2000–5000 gene losses, Fig. 6a) on the
branches leading to the families. The mean gene duplication
rate in Boletales increased abruptly around 10Ma in the Late
Miocene (Fig. 6b). This seems to be driven mostly by the fam-
ily Boletaceae, and to a smaller extent by Suillineae (Fig. S13),
and was not caused by whole-genome duplication (WGD)
events (Fig. S14).

To gain insights into the unique features of the bolete
genomes, we compared GO annotation frequencies of genes hav-
ing duplications at ancestral nodes of Boletaceae. We performed
gene-family-based enrichment analysis using GO annotations
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and found 23 molecular function, 13 biological process, and
seven cellular component terms, which were significantly over-
represented (Fisher’s exact test, P < 0.05) in gene families that
showed duplications in early Boletaceae (Table S12). The most
significant terms were ‘superoxide dismutase activity’, ‘ubiquitin-
like modifier activating enzyme activity’, ‘protein kinase activity’,
‘proteolysis’, ‘organophosphate catabolic process’, ‘myosin com-
plex’ and ‘integral component of plasma membrane’. We found
169 InterPro terms that were significantly enriched (hypergeo-
metric test, P < 0.05) among gene families that showed duplica-
tions in ancestors of the Boletaceae. Among these InterPro terms,
some exhibited specific functions, such as those related to protein
kinases (e.g. fungal-type protein kinase, serine/threonine-protein
kinase), GHs (lytic polysaccharide monooxygenases (LPMOs),
GH20 b-hexosaminidase, and GH18 chitinase) and transposases
(Kyakuja-Dileera-Zisupton transposase, Plavaka transposase, and
Tc1-like transposase).

Lignocellulose and protein degradation abilities in Boletales

The repertoires of predicted secreted proteins in Boletales species
were compared to identify possible lineage-specific features of the
machinery involved in SOM and plant/microbial cell wall degra-
dation (Figs 4, S15). Ectomycorrhizal Boletales have a signifi-
cantly smaller mean number of secreted CAZymes (e.g. GHs)
than brown-rot and white-rot species do, whereas no significant
difference was found for SSPs (Fig. 2; Table S4; P < 0.05; pair-
wise PERMANOVA). We sorted gene families coding for
secreted cell-wall-degrading enzymes into three main functional
categories; that is, enzymes involved in the degradation of lignin,
cellulose/hemicellulose (including pectin), and microbial polysac-
charides (i.e. chitin, fungal and bacterial glucans). The PCWDE
gene copy numbers showed striking differences between brown-
rot and ectomycorrhizal species (Fig. 4). The number of secreted
PCWDEs in ectomycorrhizal species ranged from 16 for
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Fig. 2 Distribution of the number of secreted proteins with percentage of variance explained by phylogeny and ecological groups. TE coverage, percentage
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(CAZyme) domains; Small secreted proteins; number of small secreted proteins (< 300 amino acids); Proteases, number of secreted proteases; CAZyme
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Bu. roseoflavus to 49 for C. virens. The nonmetric multidimen-
sional scaling analysis grouped the sequenced Boletales species
according to their known nutritional modes, brown-rot vs sym-
biosis (Fig. S16). Of note, the two Phlebopus species clustered
with the other symbiotic species. Phylogenetic relatedness of the

species (39.7%) and fungal ecology (28.5%) significantly
accounted for the variation in secreted CAZyme genes (Fig. 2;
Table S4; P < 0.05; PERMANOVA model, Genomic fea-
tures ˜ Phylogeny + Ecology). The ectomycorrhizal Scleroder-
matineae (Pi. tinctorius, Pisolithus microcarpus, and Scleroderma
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citrinum) were further separated from other symbiotic species
because of their even lower content in secreted CAZymes (Figs 4,
S16).

Brown-rot and ectomycorrhizal Boletales and Atheliales/Amylo-
corticiales lack class II lignin-modifying PODs (AA2) (Fig. S15).
In addition, the loss of synergistically acting GH7 and GH6 cel-
lobiohydrolases, operating on cellulose reducing and nonreducing
ends, is a hallmark of the ectomycorrhizal Boletales (Fig. S15).
The near complete loss of core cellulose-acting CAZymes is under-
lined by the restricted set of CBM1 binding modules, which are
often attached to key PCWDEs to mediate the targeting of
enzymes to cellulose. However, a single copy of the endoglucanase
of families GH9 and GH45, digesting cellulose into cellooligosac-
charides, is found in the symbiotrophic species, suggesting a lim-
ited capacity to degrade cellulose. The endoglucanase GH12 is
missing from Paxillus, Phlebopus, and Scleroderma species but is
present in the Boletaceae. Concerning hemicellulose degradation,
neither endo-b-1,4-xylanases (GH11) acting on the xyloglucan
backbone nor the debranching enzymes working synergistically
with GH11 (families GH54, GH62, GH67, and CE3) were
found. Enzymes involved in lignocellulose oxidation (LOX) in
brown-rot species, such as cellobiodehydrogenases (AA3_1), iron
reductase domain containing proteins (AA8), and LPMOs
(AA16), are also missing from the symbiotic Boletales genomes,
except for one copy of pyranose-2-oxidase (AA3_4) in B. edulis,
B. reticuloceps, L. asiatica, and M. broomeianus. By contrast, gene

copy number in several LOX gene families – including laccases
(AA1_1), aryl alcohol/glucose oxidases (AA3_2), alcohol oxidases
(AA3_3) (except for Pisolithus species), glyoxal oxidases (AA5),
benzoquinone reductases (AA6), glucooligosaccharide oxidases
(AA7), cellulose-acting LPMOs (AA9), and xylan-acting LPMOs
(AA14) – is similar in brown-rot and symbiotic species. Chiua
virens, a basal species of Boletaceae, has a very high number of phe-
noloxidases (AA1_1), even higher than that of Boletales brown-rot
species. Similarly, the copy number of genes coding for enzymes
acting on fungal and bacterial polysaccharides is similar for ecto-
mycorrhizal and brown-rot Boletales (Fig. 4).

The number of genes coding for secreted proteases ranges from
36 to 75 in brown-rot species, whereas it varies from 20 to 157 in
ectomycorrhizal symbionts (Fig. 4), suggesting they have a similar
capacity to degrade proteins accumulating in SOM. However,
the set of secreted proteases is much higher in Boletus species
(B. edulis, 87 and 99 copies; B. reticuloceps, 76 copies) and
G. lividus (157 copies) (Fig. 4). We observed a striking gene
duplication of the gene encoding pepstatin-insensitive carboxyl
proteinases (family G01, formerly A4) in the Boletus clade with
25–34 copies (Fig. S17). This gene duplication occurred in a syn-
tenic region in B. reticuloceps (Bolret1) and B. edulis P�rilba
(Boledp1) (Fig. S8; Table S13). Gene copy number for secreted
lipases is similar in the genomes of ectomycorrhizal and brown-
rot Boletales (Fig. 4), except for Sclerodermatineae with the lower
repertoire of lipases.
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Fig. 4 Secretome profiles of 28 Boletales and six outgroup species. The first bubble plot (on the left) shows the number of secreted genes for carbohydrate-
active enzymes (CAZymes), lipases, proteases and others (i.e. all secreted proteins not in these first three groups). The small secreted protein (SSP) group is
a subcategory showing the number of SSPs (< 300 aa). The size of the bubbles corresponds to the number of genes. Fungal species are color coded
according to their known ecology. The first bar plots (in the middle) represent the ratio of CAZymes, lipases, and proteases to all secreted proteins (left) and
the ratio of SSPs among the entire secretome (right). The second bubble plot (on the right) shows the number of plant cell-wall-degrading enzymes
(PCWDEs) and microbial cell-wall-degrading enzymes (MCWDEs, including bacterial cell-wall-degrading enzymes (BCWDEs) and fungal cell-wall-
degrading enzymes (FCWDEs)), lytic polysaccharide monooxygenases (LPMO), substrate-specific enzymes for cellulose, hemicellulose, lignin, and pectin
(plant cell walls); chitin, glucan, mannan (fungal cell walls). The second bar plots (far right) show the total count of genes including PCWDE and MCWDE
(left) and the ratios of PCWDE, BCWDE, and FCWDE (right).
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(a) (b)

(c)

Fig. 5 (a, b) Syntenic analysis of Boletus species and (c) genomic distance investigation between genes and transposable elements (TEs). (a, b) Plots
showing genes and TEs present only in syntenic regions of Boletus species Outer circle, scaffold size; first inner circle, genes coding for secreted
carbohydrate-active enzymes (CAZymes), small secreted proteins (SSPs), lipases, or proteases (see legend); second inner circle, TEs (see legend); vertical
axis of inner circles, mean distances of between neighboring genes and TEs. Shorter distances between genes and TEs result in dots toward plot centers,
whereas longer distances result in dots toward the outer circle. Boled5, Boletus edulis (BED1); Boledp1, Boletus edulis P (P�rilba); Bolre1, Boletus
reticuloceps (BR01). (c) Mean distances between TEs and genes coding for CAZymes, lipases/proteases, SSPs, other secreted proteins, and nonsecreted
proteins. Yellow: mean distances of 10 000 randomly reshuffled genome models (to generate a null hypothesis). Blue: mean distances observed in
genomes with no statistical significance (P > 0.05). Red: mean distances observed in genomes with statistical significance (P < 0.05). Brown rot (asterisk),
ectomycorrhizal (unmarked). See Supporting Information Table S8 for detailed mean distances between repeat elements and genes.
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Phlebopus portentosus saprotrophic capability

As already mentioned, P. portentosus PP33 and Phlebopus sp.
FC_14 are amongst the ectomycorrhizal Boletales having the
lower set of PCWDEs (Fig. 4), suggesting a limited saprotrophic
ability. Still, P. portentosus PP33 is able to produce basidiocarps
in the absence of any host plant (Ji et al., 2011; Cao et al., 2015),
raising the question of the catabolic pathways used to provide the
high load of simple carbohydrates required for sustaining basidio-
carp development. We thus performed RNA sequencing (RNA-
seq) profiling of P. portentosus PP33 free-mycelium grown either
on potato dextrose agar (PDA) medium or the rubber tree saw-
dust organic medium used to trigger basidiocarp development
and measured the expression of the few genes coding for secreted
PCWDEs (Table S14). We found that genes coding for laccase
(AA1_1), xyloglucan : xyloglucosyltransferase (GH16), chitinase
(GH18), chitin deacetylase (CE4), b-1,3-glucanase (GH128),
exo-b-1,3-glucanase (GH55), and cellulose-acting LPMO (AA9)
are expressed at a high level on PDA and sawdust/rice seed
organic media (Fig. S18), suggesting the corresponding enzymes
are involved in the release of soluble carbohydrates from plant
organic matter. The higher expression of the laccase and chitinase
genes (Fig. S18) suggests that sawdust polyphenols and chitin
from fungal walls are potentially used to sustain the increased C
demand required by fruiting body development.

Conservation of symbiosis-induced genes

To test the conservation of ectomycorrhiza-related genes within
Boletales species, we characterized the protein sequence similarity
of available symbiosis-induced genes from ectomycorrhizal Bole-
tales species amongst the nine saprotrophic and 19 symbiotrophic
Boletales genomes. In the absence of transcriptomic data sets
from bolete ectomycorrhizas, we queried the protein-coding gene
repertoires using BLASTP and 275 known symbiosis-induced genes
retrieved from S. luteus, Pa. involutus, Pi. microcarpus, and
Pi. tinctorius transcript profiles obtained from ectomycorrhizal
root tips of Betula, Eucalyptus, and Pinus (Kohler et al., 2015)
(Fig. S19). Most symbiosis-induced genes (85%) are conserved
amongst saprotrophic and symbiotic Boletales (clusters II to V).
These conserved symbiosis-induced genes encode for proteins
involved in cellular processes and signaling, core metabolic path-
ways and CAZymes, or proteins with no eukaryotic orthologous
groups (KOG) annotation. The 80 genes (10%) from cluster I

are mainly specific to Paxillus, Pisolithus, or Suillus species. They
mainly encode MiSSPs or genes with no known function (no
KOG domain).

Transporters, transcription factors, and secondary
metabolism enzymes

Although the genomes of the Boletales species investigated have a
similar set of terpene cyclases, symbiotrophic boletes have a
smaller number of genes encoding NRPS and NRPS-like
enzymes than brown-rot species do (Fig. S20), indicating a
restricted capability to synthesize secondary metabolites (SMs).
The gene copy numbers for the different membrane transporters
and transcriptional regulators revealed no specific pattern(s) for
ectomycorrhizal fungi in comparison with brown-rot species
(Fig. S20).

Discussion

The Boletales order includes c. 1300 described species (Kirk et al.,
2008). As either brown-rot decomposers or ectomycorrhizal sym-
bionts, they play a key role in C cycling and sequestration in
boreal, temperate, and montane forests (Eastwood et al., 2011).
Understanding the evolution and ecology of this major fungal
group can be achieved only if coupled with a comprehensive
description of their genomic traits. Deciphering the evolution of
gene families related to the modes of nutrition (i.e. saprotrophy
or symbiotrophy) is of particular interest to understand the ecol-
ogy of these plant-associated fungi. The number of published
Boletales genomes is now large enough to permit a comparative
analysis of genome evolution between and within suborders and
families exhibiting a wide range of ecological traits (e.g. mode of
nutrition, habitat, host specificity). The 28 genomes of Boletales
compared in the present study cover both the saprotrophic and
symbiotic lifestyles found in this order. The evolutionary rela-
tionships between the selected Boletales and related Atheliales/
Amylocorticiales species were assessed by constructing a time-
calibrated phylogenetic tree. Our phylogeny is in agreement with
the recent megaphylogenies of Agaricomycetes (Krah et al., 2018;
Varga et al., 2019). In these phylogenies, the emergence of the
MRCA of Agaricomycetidae, Agaricales, Polyporales, Russulales,
and Boletales was dated at 185Ma, 173Ma, 150Ma, 152Ma,
and 142Ma, respectively. In our analysis, the MRCA of the Bole-
tales was dated at 151Ma in the Late Jurassic, which is close to
previous estimates. Many of the orders within Agaricomycetes
(Agaricales, Boletales, Polyporales) originated before, but diversi-
fied after, the angiosperm and gymnosperm origins (Krah et al.,
2018). Hibbett & Matheny (2009) suggested that the ectomycor-
rhizal Boletales are younger than angiosperms and conifers but
slightly older than the rosids, which contain many symbiotic
partners of extant Boletales.

In our analysis, most brown-rot-producing Boletales species
are placed as a paraphyletic group at the base of Boletales. How-
ever, we confirmed the placement of H. pinastri among ectomyc-
orrhizal species in the ‘core Boletales’ (Sclerodermatineae,
Suillineae, and Boletineae) (Kohler et al., 2015; Krah et al.,

Table 2 Multivariate analysisa of transposable elements and genes.

Variation explained by
unclassified repeats (%)

FDR-adjusted
P values

Count
of genes

21.90 P < 0.01 GT2
11.70 P < 0.05 Total GTs
8.75 P < 0.05 SSPs

FDR, false discovery rate; SSPs, small secreted proteins.
aSee details of permutational multivariate ANOVA results in Supporting
Information Table S9.
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Fig. 6 COMPARE analysis of Boletales. (a) The reconstructed gene copy numbers of Boletales species and outgroup species. (b) Gene duplication rates
through time plot. Solid black line represents the mean of the gene duplication rate across lineages and time. Blue bars depict the SD of the gene
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2018). This brown-rot species retains numerous PCWDE genes
lost in the lineages leading to the ectomycorrhizal members of
the ‘core Boletales’ (this study; Kohler et al., 2015), suggesting
that the ancestor of the core Boletales had substantial sapro-
trophic ability, which has been retained in H. pinastri. Our work
reveals that the overall pattern of gene loss and diversification dif-
fers amongst the ectomycorrhizal Boletales suborders, supporting
the contention that these lineages originated from different eco-
logically diverse brown-rot precursors.

In their analysis of the Agaricomycetes evolution, S�anchez-
Garc�ıa et al. (2020) showed that across their 8400-species phy-
logeny, diversification rates of ectomycorrhizal lineages were no
greater than those of saprotrophic lineages. However, some ecto-
mycorrhizal lineages have elevated diversification rates in compar-
ison with their nonsymbiotic sister clades, suggesting that the
evolution of ectomycorrhizal symbioses may act as a key innova-
tion at local phylogenetic scales. In the Boletales, the relative time
course of genome innovation in each of the family-level clades is
distinct. PCWDE and SM gene losses is a well-known pattern
associated with ectomycorrhizal evolution (Wolfe et al., 2012;
Martin et al., 2016; Hess et al., 2018; Lebreton et al., 2021).
Here, we showed that extensive gene loss took place in the early
ectomycorrhizal Boletales clades. A substantial proportion of pro-
tein orthogroups contracted within the MRCA of ectomycor-
rhizal Boletales and appeared purged from the genome
completely, suggesting that the early loss of a wide range of genes
accompanied the formation of ectomycorrhizal associations.
However, the present analysis also suggests a gradual increase in
gene duplication rates in Boletaceae that is especially apparent
through the Late Miocene to the present. This finding may be
explained by at least three hypotheses. First, constraint on gene
duplicability may have been lifted in these clades, leading to a
surge of gene duplications. Second, single events with large
impacts (e.g. large segmental duplications) may have shaped
Boletaceae (and Suillineae) genomes, leading to an increase in
duplication rates. This hypothesis was mostly excluded by our
WGD analysis (Fig. S14). Third, it is also possible that the
observed gene duplications represent adaptive events that con-
tributed to the evolutionary success of boletes. Which, or whether
a mixture, of these can best explain the observed rate increase will
need to be examined with more in-depth analyses. It should also
be noted that gene duplication/loss rates may be underestimated
in our analyses due to the inherent inability of all comparative
approaches to account for events in extinct lineages. However, it
is unlikely that this has an effect on the detection rate acceleration
in the Boletaceae.

During the period from the Late Miocene to the present, TEs
also proliferated in most Boletales genomes, although Boletaceae
genomes experienced the highest accumulation. Of note, three
protein domains related to transposases (IPR040521,
IPR038717, IPR041078) are enriched among ancestral nodes of
Boletaceae. Our findings support the view that most Boletales
species are undergoing a period of genome expansion (Castanera
et al., 2017). Intriguingly, TE-mediated genome amplification
coincides with the estimated origins of ectomycorrhizal symbiosis
in Boletales (this study; Kohler et al., 2015).

The higher copy number of chitin synthase (GT2) genes in
Boletaceae could be explained by the activity of TEs, as suggested
by the close location of several GT2 genes to TEs. In addition,
the genomic location of genes coding for SSPs, proteases, and
lipases tended to be closer to the nearest TEs than the random
expectation. This suggests that TEs have contributed to the
observed higher evolutionary rate of genes encoding effector-like
SSPs, proteases, and lipases. These genome innovations may be
related to the dramatic increase in species richness of Boletaceae
(Wu et al., 2016; Sato & Toju, 2019). Although the extrinsic fac-
tors that contributed to this Miocene gene innovation remain to
be investigated, the substantial differences in the intrinsic biology
and host/habitat preferences may be relevant to the different his-
tories of Suillineae, Sclerodermatineae, and Boletineae.

In Agaricales, Russulales, Thelephorales, and Pezizales, the
transition from saprotrophy to the symbiotic ecology coincided
with the loss of most hydrolytic enzymes acting on lignocellulose
(Kohler et al., 2015; Hess et al., 2018; Murat et al., 2018;
Miyauchi et al., 2020; Looney et al., 2021; Marqu�es-G�alvez et al.,
2021). Our analyses of the largest set of ectomycorrhizal Boletales
genomes to date support the view that transitions from brown-
rot to symbiosis entailed the widespread losses of PCWDEs act-
ing on lignin, cellulose, hemicellulose, and pectin. We found
striking genomic signatures related to (hemi)cellulose and lignin-
degradation genes that separate ectomycorrhizal species from
their brown-rot relatives. Although brown-rot species are depau-
perate in PCWDEs compared with white rots, their PCWDE
repertoire, such as secreted GHs and polysaccharide lyases, is still
substantially higher than the phylogenetically related sym-
biotrophic species. Compared with their saprotrophic cousins, all
ectomycorrhizal Boletales lack the set of enzymes required for
efficient cellulose degradation consisting of cellobiohydrolases
from families GH6 and GH7, and cellulose-binding module
CBM1 appended to cellulases and endoglucanases. The absence
of the synergistically acting GH7 and GH6 enzymes, acting on
cellulose reducing and nonreducing ends, is a hallmark of ecto-
mycorrhizal species in Agaricales and Russulales (Wolfe et al.,
2012; Kohler et al., 2015; Looney et al., 2021). Concerning
hemicelluloses, neither the endo-b-1,4-xylanases (GH11) acting
on the xyloglucan backbone nor the debranching enzymes work-
ing synergistically with GH11 were found. Within the general
evolutionary trend of PCWDE loss, there are, however, more
specific dynamics at play. Different ectomycorrhizal fungi retain
distinct sets of PCWDEs, suggesting that, over their evolutionary
history, symbiotic Boletales have become functionally diverse.
For example, C. virens has a set of PCWDEs and fungal cell-wall-
degrading enzymes (FCWDEs) closer to its brown-rot cousins.
This likely reflects their ecological niche and variable dependence
on their host plants. A smaller PCWDE repertoire was found in
ectomycorrhizal Sclerodermatineae, such as Pi. tinctorius and
Pi.microcarpus, reinforcing their dependence on the plant host.
This may be related to their preferred ecological niche (i.e. sandy
soils) with a scarce content in organic matter.

Despite their ecology, genomes of most symbiotic Boletales
encode polygalacturonases (GH28, GH43), an endoglucanase
GH5_5 with a CBM1 module, endoglucanases GH12, and one
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or two copies of xyloglucan-specific endo-b-1,4-glucanases
(GH45) in B. edulis, X. badius, Phlebopus, and Suillus species.
The b-1,4 endoglucanase (GH5_5-CBM1) is the orthologue of
the Laccaria bicolor LbGH5-CBM1 involved in cell wall remod-
eling during the formation of the Hartig net and is an important
determinant for successful symbiotic colonization of the L. bi-
color–Populus tremula 9 alba association (Zhang et al., 2018).
The remaining set of GHs may thus play a role in host root colo-
nization (Zhang et al., 2018, 2021). In addition, the gene copy
number of several CAZyme families involved in LOX (laccases,
alcohol oxidases, glyoxal oxidases, benzoquinone reductases,
LPMOs (AA9, AA14)) is similar in brown-rot and ectomycor-
rhizal species, suggesting that some symbiotic Boletales are
capable of mild lignocellulose decomposition (e.g. litter bleach-
ing) to scavenge N trapped in SOM, as suggested by Floudas
et al. (2020).

Ectomycorrhizal fungi are not all depauperate in PCWDEs. A
few species, such as Acephala macrosclerotium (Leotiomycetes),
have kept a substantial set of PCWDEs that are repressed in ecto-
mycorrhizal root tips (Miyauchi et al., 2020). They may represent
transitional steps from pure saprotrophy toward pure ectomycor-
rhizal symbiosis (Lebreton et al., 2021). Within the Boletales
studied here, Phlebopus species in the Boletinellaceae appear to
have a dual lifestyle. These boletes are able to establish ectomyc-
orrhizal root tips with P. kesiya (Sanmee et al., 2010; Kumla et al.,
2016), their basidiocarp 13C/15N isotopic signature is typical of
ectomycorrhizal species (Kumla et al., 2016), and we showed in
this study that their PCWDE repertoire is amongst the lower of
the symbiotic boletes, supporting their adaptation to the symbi-
otic lifestyle. On the other hand, they are known to produce
basidiocarps in Asian, African, and Australian grasslands (Ji et al.,
2011; Wilson et al., 2012). The formation of fruiting bodies
from soil free-living mycelium away from any known ectomycor-
rhizal host plants is in favor of a substantial saprotrophic ability
of the mycelium to sustain the development of the sexual organs.
Here, we confirmed that an ectomycorrhiza-forming P. portento-
sus mycelium can produce fruiting bodies on a mixed sawdust/
seed substrate, and we proposed that the activity of their limited
set of PCWDEs and FCWDEs, such as laccases and chitinases, is
sufficient to release the carbohydrates required for basidiocarp
development in the absence of glucose from the plant. This mild
decay mechanism may play a role in litter decomposition in natu-
ral settings in the absence of host trees.

Novel and recently evolved genes, including effector-like
MiSSPs, are thought to be responsible for the specific attributes
of individual mycorrhizal lineages (Kohler et al., 2015; Martin
et al., 2016). However, we have shown by using a phylostrati-
graphic analysis that a large proportion of symbiosis-related genes
are orthologous to genes encoded by saprotrophic lineages that
arose long before the evolution of the mutualistic associations
(Miyauchi et al., 2020). These genes encoded by saprotrophic
ancestors have been co-opted for the symbiotic lifestyle. They are
related to key ecological traits, such as N and P acquisition (e.g.
organic N and P-degrading secreted enzymes, nutrient trans-
porters) already present in free-living saprotrophic ancestors of
symbiotrophic species. Unfortunately, the identification of

symbiosis-related genes in boletes, such as B. edulis, is precluded
by our inability to produce ectomycorrhizas in vitro for boletes,
with these late-stage symbionts being poor colonizers of tree
seedlings. We therefore used symbiosis-induced genes identified
in transcript profiling from Pa. involutus, Pi. tinctorius, Pi.micro-
carpus, and S. luteus (Kohler et al., 2015) and assessed their
sequence conservation/divergence within the Boletales genomes.
We confirmed that most of the symbiosis-induced genes are con-
served amongst saprotrophic and symbiotic Boletales, and only a
small set (c. 10%) of symbiosis-induced transcripts (encoding
MiSSPs or proteins of unknown function) are species specific.
This proportion is much higher (> 30%) in the Agaricales
(Miyauchi et al., 2020).

In conclusion, the genomes of symbiotrophic Boletales species
have a greatly increased content in TEs and a strikingly reduced
set of genes coding for PCWDEs in comparison with their
brown-rot relatives. In addition, several species in the Boletaceae,
Paxillaceae, and Boletinellaceae have kept a substantial set of
endoglucanases and LPMOs acting on cellulose/hemicellulose
and fungal polysaccharides, indicating that they may partly
decompose SOM by a combined activity of oxidative and
hydrolytic enzymes, as shown for Pa. involutus and L. bicolor
(Nicol�as et al., 2019). In the latter ectomycorrhizal symbionts,
the host tree actively controls the decomposing activities of the
associated fungi by controlling the amount of photosynthetic C
provided to the fungus. These genomic features are shared with
ectomycorrhizal Agaricales and Russulales (Miyauchi et al., 2020;
Looney et al., 2021). Based on our findings, it is tempting to
speculate that TEs accelerated the evolutionary rate of genes
encoding effector-like SSPs, proteases, and lipases. On the other
hand, we showed that the loss of secreted CAZYmes was not
related to TE activity, but to DNA decay. Here, we also showed
that ectomycorrhizal Boletaceae, and to a smaller extent
Suillineae, experienced an obvious expansion of gene families in
the Late Miocene, an evolutionary event possibly contributing to
the evolutionary success of boletes. This study produced the most
inclusive phylogenomic and genomic analyses for the Boletales
order to date, including characterization of several transitions
from brown-rot to ectomycorrhizal lifestyles.
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Data availability

Genome assemblies and gene annotations for the JGI-sequenced
Boletales used in this study are available via the JGI fungal
genome portal MycoCosm (see the Boletales portal at https://
mycocosm.jgi.doe.gov/boletales/boletales.info.html). Sequenced
genomes are also available at the National Center for Biotechnol-
ogy Information (NCBI) GenBank (see Table S1 for accession
codes/BioProjects). The complete transcriptome data sets are
available at NCBI Sequence Read Archive (SRA). The accession
codes for accessing the data deposited at NCBI-SRA are provided
in the caption of Fig. S18. All other data supporting the findings
of this study are included within the article and its additional
files.
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