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Abstract 

Magnolia sinica (Magnoliaceae) is a highly threatened tree endemic to southeast Yunnan, China. In this study, we generated for the first 
time a high-quality chromosome-scale genome sequence from M. sinica , by combining Illumina and ONT data with Hi-C scaffolding 
methods. The final assembled genome size of M. sinica was 1.84 Gb, with a contig N50 of ca. 45 Mb and scaffold N50 of 92 Mb. Identified 

r e peats constituted appr oximatel y 57% of the genome, and 43,473 protein-coding genes wer e pr edicted. Phylogenetic anal ysis shows 
that the magnolias form a sister clade with the eudicots and the order Ceratophyllales, while the monocots are sister to the other core 
angiosperms. In our study, a total of 21 indi viduals fr om the 5 remnant populations of M. sinica , as well as 22 specimens belonging 
to 8 related Magnoliaceae species, were resequenced. The results showed that M. sinica had higher genetic di v ersity ( θw = 0.01126 
and θπ = 0.01158) than other related species in the Magnoliaceae . How ever, population structure analysis suggested that the genetic 
differentiation among the 5 M. sinica populations was very low. Analyses of the demographic history of the species using different 
models consistentl y r ev ealed that 2 bottleneck ev ents occurr ed. The contemporar y effecti v e population size of M. sinica was estimated 

to be 10.9. The different patterns of genetic loads (inbreeding and numbers of deleterious mutations) suggested constructive str ate gies 
for the conservation of these 5 different populations of M. sinica . Overall, this high-quality genome will be a v alua b le genomic r esource 
for conservation of M. sinica . 

Ke yw ords: Magnolia sinica , PSESP, genome sequencing, deleterious mutation, demographic history, conservation 
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Introduction 

The reduction of species diversity is of global concern and has 
been closely linked with climate change and human activity. The 
conservation of biodiversity is therefore a hot topic [ 1–6 ]. The res- 
olution of the r ecentl y conv ened CBD COP 15 (15th Conference of 
the Parties , Con vention on Biological Diversity) supports biodiver- 
sity conservation issues of global concern, and one of the goals 
(so-called “30 × 30”) r equir es that at least 30% of the land, fresh 

water, and oceans on Earth be protected in some form by 2030. In 

addition, identification of geogr a phic ar eas with high concentr a- 
tions of endemic and r ar e species diversity is an important step 

in protecting biodiversity [ 7 ]. The mountains of Southwest China 
are one of the world’s biodiversity hotspots and also affected by 
climate change and human disturbance, meaning that it is also 
an area at very high risk of species extinction [ 8 , 9 ]. The study and 

protection of the threatened species in this r egion ar e ther efor e 
of particular importance and urgency [ 10 , 11 ]. In order to rescue 
the most highly threatened species and reduce their risks of ex- 
tinction in this region, Chinese scholars put forw ar d the concept 
of plant species with extr emel y small populations (PSESP) in 2005,
according to China’s current national conditions and the practice 
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f biodiversity protection [ 12–15 ]. That a species is threatened by
uman activities and interference is a necessary qualifying con- 
ition to determine whether that species meets the definition of
SESP, and human activities are also of significance when imple-
enting rescuing protection for PSESP [ 12 , 16 ]. 
Plant genome sequencing has gr own r a pidl y in the past

0 y ears, and b y the end of June 2023, the genome sequences
f more than 1,000 higher plant taxa had been published [ 17 ].
equenced genomes can provide insights and evidence to bet- 
er understand the genome biology and evolution of plants [ 18 ,
9 ]. Although the genomes of so many plant species have been
tudied, only a few studies have sequenced the genomes of
hreatened plant species (examples include Acer yangbiense , Acan- 
hoc hlam ys bracteata , Beta patula , Cercidiphyllum japonicum , Davidia
nvolucr ata , Dr acaena cambodiana , Ginkgo biloba , Kingdonia uniflora ,

alania oleifera , Ostrya rehderiana , and Rhododendron griersonianum )
n order to focus on the conservation of these species [ 20–30 ]. 

Plant species in the family Magnoliaceae are hugely important 
n gardens and horticulture across the world [ 31 , 32 ]. The Mag-
oliaceae is also one of the most highly threatened angiosperm 

roups . T here are more than 300 species in this family, which
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r e mainl y distributed intermittentl y in the temper ate, subtr op-
cal, and tropical regions of East and Southeast Asia, eastern
orth America, and Central and South America [ 33–35 ]. About
20 species of Magnoliaceae are known from China, and South-
est and South China are the centers of diversity for this family

 36 ]. Global conservation assessments suggest that 147 magnoli-
ceous species are facing threats, accounting for 48% of the total
ssessed species in this famil y [ 35 ]. Similarl y, 76 species of Chinese
a gnoliaceae ar e thr eatened, r epr esenting mor e than 50% of the

otal number of thr eatened Ma gnoliaceae species globall y [ 37 ]. At
r esent, in-depth genome r esearc h has been conducted in only 4
pecies in the Magnoliaceae ( Liriodendron chinense , Magnolia biondii ,
agnolia obovata , and Magnolia officinalis ), mainly to investigate the

ontr ov ersial e volutionary position of the ma gnoliids [ 38–41 ]. 
The e v er gr een tr ee Magnolia sinica (Law) Noot. (NCBI:txid86752)

Magnoliaceae) is a typical PSESP endemic to southeast Yunnan,
her e man y thr eatened species ar e in ur gent need of rescue and
rotection [ 12 , 14 ]. In China, the species is often r eferr ed to as Man-
lietiastrum sinicum Y .W . Law and is known as Hua gaim u in Chinese
 34 , 36 , 42 , 43 ]. It has been categorized as Critically Endangered
n the China Species Red List [ 44 ], The Red List of Magnoliaceae [ 35 ,
5 ], and The Threatened Species List of China’s Higher Plants [ 37 ]. M.
inica was proposed as a first-rank plant for national k e y protec-
ion in 1999 [ 46 ] and also in 2021 [ 47 ], and it was listed as 1 of 62
SESP in Yunnan in 2010 and also as 1 of the 120 national PSESP of
hina in 2012, requiring the most urgent rescue conservation [ 14 ,
5 ]. Recent survey data revealed only 52 individuals remain in the
ild, and compr ehensiv e conserv ation r esearc h and pr otectiv e ac-

ion of M. sinica have been implemented, including r epr oductiv e
nd seed biology, genetic diversity studies based on SSR (Simple
equence Repeat), sequencing of the c hlor oplast genome, in situ
onservation, ex situ conservation, and reintroduction programs
 48–53 ]. Although a great deal of protection and r esearc h action
as been carried out, the lack of natural regeneration and genetic
escue still limits the protection of M. sinica . T herefore , the formu-
ation of genetic rescue strategies for M. sinica will benefit greatly
r om the explor ation of harmful cum ulativ e m utations, popula-
ion historical dynamics, and effective population size from the
hole-genome le v el. 
Her e, we r eport a high-quality c hr omosome-scale genome se-

uence of Magnolia sinica and compare it with other relevant pub-
ished genomic data. By exploring the evolution of the genome, as
ell as the genetic c har acteristics, demogr a phic history, and ge-
etic load of M. sinica , we have identified genomic factors that may
ontribute to the threats to this species, and on the basis of this,
e propose further strategies for the conservation of M. sinica . 

aterials and Methods 

ollection of plant material 
agnolia sinica is only found scattered in se v er al counties in south-

ast Yunnan (Fig. 1 ). Fresh young leaf material was collected for
hole-genome sequencing from a single individual. This individ-
al is conserved and growing ex situ at the Kunming Botanical
arden (KBG) but was originally introduced from Xichou County,
outheast Yunnan. For transcriptome sequencing, leaf, stem and
oot samples were obtained from a 3-year-old seedling also at
BG, and fresh fruits were collected from the wild in Jinping
ounty, Yunnan. Fr esh leav es used for genome libr ary pr epar a-

ion and other tissues used for transcriptome sequencing were
mmediatel y fr ozen in liquid nitr ogen and stor ed at −78.5 ◦C in
ry ice until DNA or RNA extraction. The remaining 21 leaf sam-
les for resequencing were collected from the original species
abitat in Xic hou, Ma guan, and Jinping Counties from 2017 to
019 ( Supplementary Table S1 ). Other DNA materials from 8 fur-
her species in the Magnoliaceae was used for comparison of ge-
etic diversity and investigation of the phylogenic relationships.
hese DNA materials were collected from specimens cultivated at
BG and the Germplasm Bank of Wild Species, Chinese Academy
f Sciences ( Supplementary Table S2 ). After the leaves were col-
ected, they were quickly packed in silica gel desiccant and stored
n silica gel until resequencing. 

enome sequencing 

enomic DNA sequencing was performed using different se-
uencing platforms sim ultaneousl y to ensur e accur ate assem-
ly. (1) For ONT (Oxford Nanopore Technologies) PromethION se-
uencing, total DN A w as extracted using the cetyltrimethylam-
onium bromide (CTAB) method [ 54 ] using a genomic DNA ex-

r action kit (cat. 13323, Qia gen). A NanoDr op One UV-Vis spec-
rophotometer (Thermo Fisher Scientific) was then used to c hec k
NA purity and a Qubit 3.0 Fluorometer (Invitrogen) was used to
ccur atel y quantify the DNA. After purification, the adapters from
he LSK109 Ligation kit (cat. SQK-LSK109; Oxford) were used for
he ligation reaction, and finally the Qubit 3.0 Fluorometer (Invit-
ogen) was used to quantify the constructed DNA library. The DNA
ibrary was subsequently transferred to Nanopore PromethION
ONT) for sequencing 7 flow cells. (2) For Illumina sequencing,
hort-insert libraries were prepared using 2 μg genomic DNA, and
 Illumina PCR-free libraries of 300 to 500 bp insertion size were
onstructed according to the standard manufacturer’s protocol
sing the DNAseq Library Index Kit (Hangzhou Kaitai Biotech-
ology, Co., Ltd.). The whole-genomic libr aries wer e sequenced
n an Illumina Hiseq X Ten platform ( RRID:SCR _ 020131 ). (3) The
i-C library was prepared by Beijing Ori-Gene Science and Tech-
ology Co., Ltd. High molecular weight genomic DNA ( ≥700 ng)
as cross-linked in situ , extracted, and then digested with a re-

triction enzyme . T he DN A ends w ere then marked with biotin-
4-dCTP, and the crosslinked fragments were blunt-end ligated.
r a gments wer e shear ed to a size of 200 to 600 bp with sonication.
he Hi-C libraries were amplified using 12 to 14 cycles of PCR and
equenced in the Illumina HiSeq X Ten platform. (4) Transcrip-
ome sequencing was performed on a PacBio Sequel (Pacific Bio-
ciences) platform ( RRID:SCR _ 017989 ) using full-length isoform
equencing (iso-seq) [ 55 ]. High-quality RN A w as extracted with a
iagen kit while a series of RNA samples wer e tested: Nanodr op
as used to assess RNA purity, Qubit was used to pr ecisel y quan-

ify the RNA, and an Agilent 2100 Bioanalyzer was used to calcu-
ate RIN values and 28S/18S. Then, a SMAR Ter PCR cDN A synthe-
is kit (Clontech,Princeton, NJ, USA) was used to reverse transcribe
he RNA into cDNA, the r e v erse tr anscription pr oducts wer e am-
lified using KAPA HiFi PCR kits (Roc he Dia gnostics, Switzerland),
nd the amplified products were used to construct a SMRTbell li-
rary using a SMRTbell template prep kit 1.0. The third-generation
equencer Sequel (Pacific Biosciences) was used to sequence the
ull-length cDNA to obtain high-quality transcriptome sequenc-
ng data. 

enome assembly 

e obtained ∼203 Gb ( ∼100 ×) ONT reads, ∼215 Gb ( ∼110 ×) Il-
umina Hiseq reads, ∼222 Gb Hi-C reads, and ∼24 Gb iso-seq
eads ( Supplementary Tables S3 –S6 ). The de novo genome assem-
ly was first performed upon ONT reads using different assem-
l y str ategies. Briefly, the long noisy ONT r eads wer e first cor-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_020131
https://scicrunch.org/resolver/RRID:SCR_017989
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
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Figure 1: Habitat and morphological characters of Magnolia sinica . (A) Habitat severely affected by human interference. (B) Habit. (C–E) Flo w ers of 
different individuals. (F) Fruits. (G) Fruit completely opened. (H) Seeds without testa. 
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rected with NextDenovo [ 56 ] and then assembled with SMART- 
DENO V O ( RRID:SCR _ 017622 ) [ 57 ] and WTDBG (assembly v0.2), re- 
spectiv el y [ 58 ] ( Supplementary Tables S7 –S 9 ). Primary assembly 
v0.1 was selected as the optimal assembly due to the low error 
rate . T hen, the Illumina sequencing reads were used to improve 
base-le v el accur acy of the assembl y with Pilon [ 59 ]. The 2 dr aft as- 
semblies (v0.1 as r efer ence and v0.2 as query) were then merged 

using Quic kMer ge to impr ov e continuity [ 60 ] and then polished 

again using pilon ( Supplementary Tables S10 –S12 ). The GetOr- 
ganelle software was used to assemble the mitochondrial (param- 
eters: -R 50 -k 67,87,107,127 -F embplant_mt -w 125) and c hlor o- 
plast (-R 15 -k 67,87,107,127 -F embplant_pt -w 125) genomes,
r espectiv el y, and Banda ge was used for manuall y adjustment 
[ 61 , 62 ]. 
Hi-C r eads wer e ma pped to the dr aft assembl y with Juicer, and
 candidate c hr omosome-length assembl y was gener ated auto-
atically using the 3D-DNA pipeline to correct misjoins, order,

nd orientation and to anchor contigs [ 63 , 64 ]. Manual r e vie w and
efinement of the candidate assembly was performed in Juicebox 
ssembly Tools (JBAT) for quality control and interactive correc- 

ion [ 65 ]. To reduce the influence of chromosome interactions and
o further impr ov e the c hr omosome-scale assembl y, eac h c hr o-

osome was separ atel y r escaffolded with 3D-DNA and then man-
all y r efined with Juicebox ( RRID:SCR _ 021172 ). Finall y, the c hr o-
osomal and unanc hor ed sequences wer e gener ated, with the

ap length set as 100 bp. 
To fill the assembly gaps, LR_Gapcloser (default parameters) 

as run for 2 rounds based on ONT reads, and then NextPol-

https://scicrunch.org/resolver/RRID:SCR_017622
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_021172
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BA

C

Figure 2: Genomic c har acter and genome evolution of Magnolia sinica . (A) The genome features across 19 chromosomes of M. sinica . (1) Nineteen 
pseudoc hr omosomes. (2) Class I transposable element (TE) density (including long terminal repeats [LTRs], long and short interspersed nuclear 
elements). (3) Class II TE (DNA and Heliron) density. (4) Coding gene (messenger RNA) density. (5) The density of single-nucleotide pol ymor phism (SNP) 
loci. (6) GC content. (7) collinear blocks. (B) Hi-C interaction heatmap for the M. sinica genome showing interactions among 19 chromosomes. (C) The 
phylogenetic tree of 18 species showing the proportions of the gene families that contracted and expanded (pink: contracted; blue-green: expanded; 
values at the nodes represent the time of differentiation and 95% CI). 

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giad110/7516261 by guest on 14 January 2024



The c hr omosome-scale genome of Ma gnolia sinica r e v eals its in-depth conserv ation | 5 

 

 

 

 

 

 

e
g  

m
o  

t  

n  

s  

(  

u

3
u
O  

b  

t
c
s  

v  

s  

s  

T

G
a
O
s  

a  

o  

a
m  

[  

b  

s  

m  

b  

o  

c  

s  

S  

t  

t  

a  

f

f
w  

h
w  

w  

h
[  

c

G
p
A  

s  

w  

t  

r  

a  

r  

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giad110/7516261 by guest on 14 January 2024
ish (default parameters) was run for 3 rounds to polish the as- 
sembly based on Illumina reads [ 66 , 67 ]. In order to eliminate re- 
dundancy and external source pollution: (i) Redundant was used 

to r emov e the r edundant unanc hor ed sequences (identity ≥0.98) 
[ 68 ]; (ii) unplaced contigs with a length of less than 5 kb were re- 
moved; (iii) the assembly was aligned with the NT database [ 69 ] 
using BLASTN, combined with cov er a ge depth and GC content, to 
determine whether there was contamination from other species; 
and (iv) haplotigs or fragments with low average coverage depth 

(less than 75% of the peak depth) were removed with manual cu- 
r ation. The c hr omosomes wer e coded as c hr01–c hr19 according 
to their lengths (from long to short) (Fig. 2 A, B). T he numbers ,
lengths, and proportions of the chromosomes, unanchored se- 
quences, and c hlor oplast and mitoc hondrial sequences ar e sum- 
marized in Supplementary Table S13 . 

Assessment of genome assembly 

The completeness of the final assembly was e v aluated using 
BUSCO ( RRID:SCR _ 015008 ) and LTR Assembly Index (LAI) [ 66 , 70 ].
KAT was used to compare the genome assembly and the Illu- 
mina reads ( Supplementary Fig. S1 ). Bwa was used to map the 
Illumina reads to the genome, and Minimap2 was used to map 

the third-generation ONT and PacBio transcriptome (iso-seq) CCS 
reads to the genome [ 71 , 72 ]. The nonprimary alignment was re- 
moved, so that each read only mapped once and the mapping ra- 
tio and cov er a ge percenta ge wer e also calculated ( Supplementary 
Table S14 ). The cov er a ge depth of single-copy and multicopy 
core genes should be consistent with a Poisson distribution if 
without redundancy after checking ( Supplementary Fig. S2 ). The 
second-gener ation r eads wer e ma pped to the genome with Bwa,
and mutation sites were detected using SAMtools/BCFtools ( 
RRID:SCR _ 005227 ) [ 73 ]. The single-base heterozygous sites were 
used to calculate the heter ozygosity r ate, and homozygous sites 
were used to calculate the error rate . J uicer was used to map the 
Hi-C data to the final genome assembl y. The c hr omosome cluster- 
ing heatmap of M. sinica was adequate, and there were no obvious 
c hr omosome assembl y err ors (Fig. 2 A, B) [ 64 ]. 

Genome annotation 

The repeat libraries were generated by de novo identification 

of the repeat region family using the RepeatModeler software.
LTR_r etrie v er ( RRID:SCR _ 017623 ) was also used to identify the 
intact long terminal repeat (LTR) retrotransposons, and then a 
second library was clustered and generated [ 72 ]. After combin- 
ing these 2 libraries directly, we used Re peatMask er ( RRID:SCR _ 
012954 ) to identify repeated regions on the genome. Transcripts 
wer e gener ated following the process of isoseq3 [ 74 ] and anno- 
tated to the genome using the PASA pipeline ( RRID:SCR _ 014656 ) 
[ 75 ]. The r esults wer e used to tr ain an AUGUSTUS model for 5 
rounds of optimization [ 76 ]. In total, 154,904 nonredundant pro- 
tein sequences from L. chinense [ 38 ], Cinnamomum kanehirae [ 77 , 78 ],
Piper nigrum [ 79 ], Amborella trichopoda [ 80 ], and Arabidopsis thaliana 
[ 81 ] were used as evidence of homologous proteins for gene anno- 
tation. 

Gene structure annotation was conducted using the Maker2 
pipeline [ 82 ]. Briefly, AUGUSTUS ( RRID:SCR _ 008417 ) was used 

to perform ab initio prediction of the genome with the repeti- 
tiv e r egions masked out [ 76 ]. Transcripts were aligned with the 
genome using BLASTN ( RRID:SCR _ 001598 ), and BLASTX ( RRID: 
SCR _ 001653 ) was also used for aligning the pr otein e vidence with 

the genome. Exonerate was used to optimize the alignments [ 83 ].
Based on the above 3 categories of evidence, hints files were gen- 
rated, to allow AUGUSTUS to ultimately synthetically predict the 
ene models. Annotation edit distance (AED) scores of each gene
odel were calculated according to the transcript and homol- 

gous pr otein e vidence within the pipeline. Finall y, false anno-
ations in the coding frame and overly short ( ≤50 AA) gene an-
otations were removed. tRNAScan-SE, Barrnap [ 84 ], and Rfam-
can were used to annotate transfer RN A (tRN A), ribosomal RN A
rRNA), and other noncoding RNA, r espectiv el y [ 85 ]. B USCO was
sed to e v aluate the integrated annotated proteins [ 70 ]. 

The functions of protein-coding genes were annotated based on 

 strategies. First, genes were mapped with the eggNOG database 
sing eggNOG-mapper to annotate gene function, including Gene 
ntology (GO) and KEGG annotation [ 86 ]. Second, for assignment
ased on sequence conservation, a diamond search of the pro-
ein sequences from several protein databases was performed, in- 
luding the databases Swiss-Prot, TrEMBL, NR, and the Arabidop- 
is database [ 87 ]. Lastly, for assignment based on domain conser-
 ation, InterPr oScan was used to examine conserved amino acid
equences , motifs , and domains of proteins by matc hing a gainst
ubdatabases of se v er al InterPr o databases, including CDD, PAN-
HER, PRINTS, Pfam, and SMART [ 88 ]. 

ene family identification and phylogenetic 

nalysis 

rthoFinder2 was used to infer orthogroups, with the parameters 
et to “-M msa” [ 89 ]. A protein alignment of 1,070 orthogroups with
 minimum of 87.5% of species having single-copy genes in any
rthogr oup obtained fr om OrthoFinder2 was used to construct
 phylogenetic tree using IQTREE, using a maximum likelihood 

ethod (the best model was JTT + F + R5,1,000 bootstr a p r eplicates)
 90 ]. In addition, ASTRAL was also used to infer the species tree
ased on 3,841 gene trees with genes in at least 70% taxa being
ingle copy. MCMCTr ee, fr om the PAML pac ka ge, was used to esti-
ate species div er gence time and the m utation r ate in M. sinica ,

ased on the codon alignment of 211 1:1 nonmissing single-copy
rthologous genes [ 91 ]. Four fossil calibration time points were
hosen: stem Nymphaeaceae (113 Mya: Millions of Years Ago),
tem Poaceae (55.8 Mya), stem Lauraceae (104 Mya), and stem
antalales (65.5 Mya) [ 92 , 93 ]. The root time of the phylogentic
ree was set according to pr e vious studies [ 92 , 93 ]. Based on the
ime tree and 12,306 homologous gene families , C AFE was used to
ssess the expansion, contraction, and r a pid e volution of the gene
amilies [ 94 ]. 

Based on the orthologous and paralogous gene relationships in- 
erred with OrthoFinder2, collinearity between and within species 
as analyzed using MCScanX_h [ 95 ]. According to the collinear
omologous gene pairs, the protein sequences were first aligned 

ith MUSCLE [ 96 ] and then transformed into codon alignment
ith PAL2NAL [ 97 ]. Ka and Ks were then calculated between
omologous gene pairs using KaKs_Caculator v2.0 (YN model) 
 98 , 99 ]. Pol yploidization e v ents and time wer e inferr ed based on
ollinearity in combination with the Ks value [ 99 ]. 

enome mapping and single-nucleotide 

olymorphism calling 

 total of 43 samples, including 21 samples of M. sinica and 22
amples of a further 8 Magnoliaceae species, were sampled for
hole-genome resequencing ( Supplementary Tables S1 , S2 ). A to-

al of 5,687 million reads were produced across all samples . T he
 aw data wer e filter ed using fastp [ 100 ] to trim a wa y the adaptors
nd low-quality regions . T he cleaned r eads wer e ma pped to the
 efer ence genome using BWA-MAM [ 71 ] with the default parame-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_015008
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_005227
https://scicrunch.org/resolver/RRID:SCR_017623
https://scicrunch.org/resolver/RRID:SCR_012954
https://scicrunch.org/resolver/RRID:SCR_014656
https://scicrunch.org/resolver/RRID:SCR_008417
https://scicrunch.org/resolver/RRID:SCR_001598
https://scicrunch.org/resolver/RRID:SCR_001653
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
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ers . T he markdup model in SAMtools [ 73 ] was used to mark and
o r emov e duplicate r eads. To impr ov e the accur acy of the subse-
uent anal yses, we onl y r etained bases with a quality scor e > 20
nd mapping quality > 30 (as the filter parameters in ANGSD and
 reebay es). We removed the sites with a mapping depth across all
amples of < 100 or > 600 as well as the sites not mapped to chro-
osomes , using SAMtools . In total, 1,585,988,829 sites (dataset 1)

rom the BAM files were retained after quality control. 
F reebay es ( RRID:SCR _ 010761 ) [ 101 ] was used to process single-

ucleotide pol ymor phisms (SNPs) calling for M. sinica and a to-
al of 176,087,519 variable sites were obtained. The resulting SNP
ataset was then filtered with vcftools ( RRID:SCR _ 001235 ) [ 102 ]
sing the following criteria: (i) sites with a genotype quality < 20 or
enotypes with depth < 5 wer e tr eated as missing, (ii) nonbiallelic
nd non-SNP sites, (iii) SNPs with missing rate > 20% (dataset 2:
1,438,677 SNPs), and (iv) SNPs with minor allele frequency (MAF)
 0.05 (dataset 3: 8,149,323 SNPs). 

opulation genetics 

 opLDdeca y was used for linkage disequilibrium analysis across
he M. sinica genome . T he T hetaStat module in ANGSD ( RRID:SCR _
21865 ) v0.93 [ 103 ] was used to assess genome-wide diversity by
alculating different estimators of θ , including θW 

(W atterson’ s θ )
 104 ] and θπ (nucleotide diversity), Tajima’s D [ 105 ], and Fu and Li’s
 [ 106 ]. These statistics were calculated in a window size of 20 kb
nd a step size of 10 kb according to the result of LD decay, using
ataset 1 generated previously. Individual heterozygosity was also
alculated in ANGSD v0.93 for M. sinica in our r esearc h. 

For population structure analysis, we first used PLINK ( RRID:
CR _ 001757 ) [ 107 ] to r emov e linka ge sites fr om dataset 3 with the
arameter “–indep-pairwise 50 10 0.2,” and we obtained a total
f 454,661 independent SNPs (dataset 4). Dataset 4 was further
sed to explore the population structure of M. sinica using the
r ogr am Admixtur e v1.3.0 [ 108 ], and the most likel y number of ge-
etic clusters (ancestor numbers, K ) was selected based on 10-fold
r oss-v alidation err or (CV) v alue. Supplementary Fig. S3 contains
 sc hematic dia gr am sho wing ho w these datasets wer e gener ated.

ncestral sequence reconstruction 

e mapped data from several samples of other species of Magno-
ia and a sample of Liriodendron ( Supplementary Table S15 ) to the

. sinica genome using BWA-MEM with the default parameters.
t the same time, we used freebayes to call the genotype with

he same filter parameters as the SNP calling described abo ve ,
xcept that “–r eport-monomor phic” was used to keep monomor-
hic genotypes in the output. Phylogenetic tr ees wer e constructed
sing IQtree with the substitution model MFP + ASC and using L.
hinense as the outgroup. We then used an empirical Bayesian

ethod in IQtree [ 90 ] to reconstruct the ancestral state of each
ite of eac h c hr omosome; this method can produce accurate an-
estral sequence reconstruction [ 109 ] and has been previously
sed to reconstruct ancestral state in other works [ 23 , 110–112 ]. Fi-
all y, we r eclassified the ancestral state according to the posterior
r obability of eac h site . P osterior probabilities ≥0.95 were classed
s “high confidence”; lo w er probabilities w ere considered ambigu-
us and marked as “N.” The sequence from the crown group of
agnolia species was defined as the ancestral state. 

nference of demographic history 

 stairw ay plot w as used to infer the demogr a phic history of M.
inica [ 113 ]. The mutation rate was estimated as 1.2e-7 per locus
er gener ation, whic h was constructed using MCMCTree based
n the 4-fold degenerated sites (4D sites) of orthologous genes.
he generation time was set as 30 years, based on the cultivation
ecords of this species in KBG. Dataset 1 was further filtered by
emoving the sites within 5 kb of gene regions to ensure site neu-
rality, and 897,314,345 genomic sites were retained (dataset 5).
he unfolded site frequency spectrum (SFS) for M. sinica was es-
imated using the functions doSaf and realSFS in ANGSD v 0.921
 103 ] with dataset 5 and the recommended filtering parameters
-minMapQ 30 -minQ 20.”

We also used the pairwise sequentially Markovian coalescent
PSMC) model to reconstruct the demographic history of M. sinica
 114 ]. Using the BAM files (dataset 1) generated by BWA-MAM and
he markdup model in SAMtools [ 73 ], we made a consensus fastq
le for each sample using SAMtools and BCFtools with the pa-
ameter set to -C50 to downgrade the mapping quality for reads
ontaining excessive mismatches . T he script vcfutils.pl was used
o k ee p the minim um r ead depth to 5 × and the maxim um r ead
epth to 50 × for all individuals . T he consensus fastq file was con-
erted into an input file for PSMC using fq2psmcfa with the pa-
ameter -q 20 set, to remove consensus calls with qualities ≤20.
he PSMC analysis was run using default values for the upper

imit to assign a date to the most recent common ancestor (-t 15)
nd theta/rho (-r 5). The atomic time interval pattern (-p) was set
o “4 + 30 ∗2 + 4 + 6 + 10.” We plotted the results using the same mu-
ation rate and generation time as described abo ve . 

The contemporary effective population size of M. sinica was as-
essed using the linkage disequilibrium method in NeEstimator
2 [ 103 ] with the reduced dataset 4 (filtered by vcftools with –max
issing 0.95 and –thin 60000) to ensure accuracy [ 115 ]. 

stimation of deleterious mutations and 

nbreeding 

ccumulation of deleterious mutations is likely to impact species
tness . T he Sorting Intolerant from Tolerant (SIFT) algorithm [ 116 ]
as used to predict deleterious mutations, with the ancestral se-
uences reconstructed above as a reference . T he TrEMBL plant
atabase [ 117 ] was used to search for orthologous genes. After
olarization of dataset 2, protein-coding variants of 8,896,099 re-
ained SNPs were categorized as nonsynonymous or synonymous
ites. Nonsynonymous sites were further divided into deleterious
SIFT score < 0.05) and tolerated (SIFT score ≥0.05) based on their
IFT score [ 118 ]. We also calculated the derived allele frequency
DAF) of deleterious mutations. 

In addition, frequency of runs of homozygosity (FROH) has been
sed as a robust estimate of genomic inbreeding [ 119 ] and was
stimated following pr e vious r esearc h [ 120 , 121 ]. Briefly, runs of
omozygosity (R OHs) w ere first identified based on dataset 2 using
cftools v0.1.17 with parameter “–LROH ” [ 102 ], and then FROH
as calculated with the total length of ROH divided by the genome

ize of M. sinica . 

esults 

enome sequencing and assembly 

he libraries sequenced on the ONT PromethION platforms us-
ng 7 cells resulted in the generation of a total of 9.11 million
eads with ∼202.85 Gb sequencing data ( ∼100 ×), with an av er a ge
ead length of 22 kb (the longest read was 194 kb, and N50 was
5 kb) ( Supplementary Table S3 ). A total of 1,432 million reads
er e gener ated with ca. 214.95 Gb ( ∼110 ×) data using the Illu-
ina HiSeq platform ( Supplementary Table S4 ). A total of 1,480
illion reads with ca. 222.13 Gb data were produced with Hi-C se-

https://scicrunch.org/resolver/RRID:SCR_010761
https://scicrunch.org/resolver/RRID:SCR_001235
https://scicrunch.org/resolver/RRID:SCR_021865
https://scicrunch.org/resolver/RRID:SCR_001757
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
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Table 1: Statistics of Magnolia sinica genome assembly and 

annotation 

Parameter Magnolia sinica 

Total assembly size (bp) 1,839,595,854 
GC content (%) 40.18 
Total number of contigs 203 
Maximum contig length (bp) 96,921,630 
Minimum contig length (bp) 5,003 
Contig N50 (bp) 44,871,976 
Contig N90 (bp) 10,133,504 
Total number of scaffolds 130 
Maximum scaffold length (bp) 141,926,363 
Minimum scaffold length (bp) 5,003 
Scaffold N50 (bp) 92,164,922 
Scaffold N90 (bp) 73,752,208 
Gap number 73 
Complete BUSCOs (%) 97.9 
Complete single-copy BUSCOs (%) 94.3 
Complete and duplicated BUSCOs (%) 3.6 
Fr a gmented B USCOs (%) 0.5 
Missing BUSCOs (%) 1.6 
Gene number 44,713 
Protein-coding genes 43,473 
LAI value 10.3 
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quencing ( Supplementary Table S5 ). Through the optimal assem- 
bly method, the final size of the assembled M. sinica genome was 
1.84 Gb, which was similar to the 1.9 Gb genome size estimated 

using k -mers ( Supplementary Fig. S4 , Supplementary Tables S10 ,
S11 ). A total of 108 contigs (1.82 Gb, accounting for 99.08% of 
the whole genome) with an av er a ge size of 15 Mb were anchored 

onto the 19 c hr omosomes . T he contig N50 of the M. sinica genome 
was ca. 45 Mb and the scaffold N50 was ca. 92 Mb, both of 
whic h wer e m uc h higher than those of other pr e viousl y r eported 

magnolia genomes (Table 1 ) [ 37–40 ]. In addition, the mitochon- 
drial and c hlor oplast genomes wer e assembled into cir cular DN A 

molecules of 856,922 bp and 160,070 bp, r espectiv el y. The LAI 
value was estimated to be 10.3 based on LTR, indicating that 
the gene integrity was r elativ el y good ( Supplementary Tables S11 ,
S12 ). We also calculated that the heter ozygosity r ate in M. sinica 
was about 1.21% and that the error rate was about 0.0072%. 

In total, 1,580 (97.9%) complete BUSCO genes, including 1,522 
(94.3%) complete and single-copy genes and 58 (3.6%) complete 
and duplicated genes, were identified among the 1,614 total 
B USCO gr oups. Ho w e v er, 8 (0.5%) genes were found to be fr a g- 
mented and 26 (1.6%) genes were missing based on the BUSCO 

analysis ( Supplementary Table S11 ). 

Genome annotation 

A total of 2,329,558 re petiti ve sequences were identified in the 
M. sinica genome, with a total length of ∼1.05 Gb, and ac- 
counting for 56.99% of the genome. Of these, the highest pro- 
portion was LTR, accounting for 48.9% of the whole genome 
( Supplementary Table S16 ). The most abundant repeat element 
families were Copia (388,301, 14.88%) and Gypsy (759,932, 27.40%) 
( Supplementary Table S16 ). A total of 18 million subreads with 

∼24.58 Gb data were generated from transcriptome sequenc- 
ing, fr om whic h 43,473 pr otein-coding genes wer e annotated 

( Supplementary Tables S6 , S17 ). The mean lengths of gene region,
transcript, and coding DNA sequences were 11,297, 1,552, and 

1,091, r espectiv el y ( Supplementary Table S17 ). Mor eov er, 71 rRNA,
658 tRNA, and 511 noncoding RNA sequences were identified 
 Supplementary Table S18 ). A total of 38,041 genes were annotated
sing GO (14,360, 33.03%), KEGG (14,937, 34.36%), eggNOG (29,585,
8.05%), and COG (31,414, 72.26%). Based on sequence conser- 
 ation, se v er al pr otein databases, including Swiss-Pr ot (21,220,
8.81%), TrEMBL (31,720, 72.96%), NR (31,242, 71.87%), and Ara- 
idopsis thaliana (25,007, 57.52%), were annotated with diamond.
or assignment based on domain conservation, certain other 
atabases, including Pfam (25,850, 59.46%), Coils (2,533, 5.83%),
DD (28,110, 64.70%), SMART (8,247, 18.97%), and others, were an-
otated with InterProScan ( Supplementary Table S19 ). 

nalysis of phylogeny , collinearity , and 

hole-genome duplication 

n order to investigate the early evolution of the core angiosperms,
e identified 579,290 homologous genes belonging to 20,538 
ene families from the 18 related genomes using OrthoFinder2 
 Supplementary Fig. S5 ). A total of 1,266 expanded and 1,276 con-
racted gene families in M. sinica were identified and annotated
Fig 2 C). A maximum likelihood tree was constructed using 1,070
rthogroups of 18 species. As shown in the ML phylogenetic tree
Fig. 2 C), magnolias formed a sister relationship with both the eu-
icots and the Ceratophyllales, while the monocots were sister 
o the other core angiosperms . T he Magnoliales and the Laurales
er e pr edicted to hav e div er ged fr om the Piper ales at ca. 149.3
ya (137.7–160), a result that was slightly different from that of a
hole-genome study of black pepper, in which the differentiation 

ime was estimated at 175 to 187 Mya [ 79 ]. The Magnoliales were
r edicted to hav e div er ged fr om the Laur ales at ca. 122.2 Mya. In
he Magnoliales, the estimated differentiation time of the genera 
agnolia and Liriodendron was predicted to be 23.4 Mya, and within
agnolia , the closel y r elated species M. sinica and M. biondii were

stimated to have diverged ca. 10.9 Mya. 
A total of 7,807 colinear gene pairs on 779 colinear blocks were

nferred within the M. sinica genome . T he collinearity depth ratio
etween M. sinica and L. chinense was 1:1 ( Supplementary Fig. S6 ),

ndicating that the 2 species have no species-specific whole- 
enome duplication (WGD) e v ents. Collinearity between these 2
pecies and earlier differentiated dicotyledons such as grapes was 
lways 2:3 ( Supplementary Figs. S7 , S8 ), indicating that M. sinica
nd L. chinense experienced a WGD event after differentiation from
he eudicots, which is consistent with the conclusions of the study
nv estigating L. c hinense [ 38 ]. Similarl y, the collinearity with the
arly angiosperms Amborella trichopoda and Nymphaea tetragona 
as 2:1 and 2:2 ( Supplementary Figs. S9 , S10 ), r espectiv el y, whic h

ndicates that M. sinica and L. chinense only experienced a single
har ed WGD e v ent after their differ entiation fr om these plants.
rom the paralogous collinearity block in M. sinica , it can be seen
hat this WGD e v ent occurr ed at a Ks value of about 0.75. Based
n the c hr omosome tr ee anal ysis, the Ma gnoliaceae and the Lau-
 aceae shar ed a WGD e v ent, but this is not shar ed with pepper. Af-
er differentiation from other species, the Magnoliaceae ( M. sinica
nd L. chinense ) experienced a single WGD event, the Lauraceae
 Cinnamomum kanehirae ) experienced 2 WGD e v ents, and pepper
xperienced 3 WGD e v ents. 

enome-wide di v ersity and population structure 

fter filtering out low-quality reads and adapter sequences, 5,386 
illion r eads r emained for pr ocessing ( Supplementary Table S20 ).

he sequencing depth of M. sinica samples ranged from 8.8 × to
2.6 ×, with a mean value of 10.5 ×, and were between 10.8 × and
4.3 × for the other 8 Magnoliaceae species ( Supplementary Table
20 ). The mapping rates of M. sinica ranged from 90.80% to 99.70%,

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
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https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
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ith a mean value of 97.63%, and were 95.30% to 99.53% for the
ther 8 Magnoliaceae species ( Supplementary Table S20 ). 

The mean heterozygosity rate of M. sinica was 1.29% ± 0.07%
 Supplementary Table S21 ), ranging from 1.12% to 1.38%, and the
rees with the lo w est and the highest heter ozygosity r ates wer e
oth found in the XZQ population. The MAD population had the
o w est heterozygosity (1.19%), while the DLS population had the
ighest heterozygosity (1.32%). 

Nucleotide diversity in M. sinica was estimated using 2 pa-
ameters. W atterson’ s θ ( θw) and genome-wide diversity ( θπ )
f M. sinica were calculated as 0.01416 and 0.01494, respec-
iv el y ( Supplementary Table S22 ). When compared with other
pecies, M. sinica was found to have higher genetic diversity
 Supplementary Table S23 ) and was a ppr oximatel y 12-fold higher
han that of L. chinense (0.00123) [ 38 ]. 

The population structure results sho w ed that the CV error
as smallest when there was an optimal number of clusters
 = 1 ( Supplementary Fig. S11 ), suggesting low genetic differ-
ntiation among populations of M. sinica (Fig. 3 A). Low genetic
ifferentiation among populations was further suggested by the

ow F st statistics between population pairs of M. sinica , which
ad a mean value of 0.133. We hav e giv en the structur e r e-
ults for K = 2 and K = 3 in Fig. 3 B. At K = 2, all the popu-
ations of M. sinica could be separated into 2 components, in-
luding a blue component and an orange component, the DLS,
AD and MC populations a ppear ed to hav e mixed ancestry be-

ween the XZQ and FD populations. When K = 3, the DLS pop-
lation a ppear ed to be geneticall y mixed with the MAD, MC
nd FD populations. Both the XZQ and FD populations were
eneticall y “pur e” fr om the other M. sinica populations . The
AD and MC populations wer e geneticall y similar irr espectiv e

f K . 

emographic history 

he demogr a phic history of M. sinica inferr ed b y stairw ay plot 2
ndicates 3 significant population declines, 2 of which were also
etected by PSMC (Fig. 3 C). In the scenario inferred from stairway
lot 2, the earliest population decline occurred at 1.3 Mya and con-
inued until 1.1 Mya. For the scenarios inferred by the PSMC, the
arliest population decline occurred at 1.5 Mya and continued un-
il 0.8 Mya. After this, the population of M. sinica is predicted to
ave experienced a period of recovery in both scenarios . T he sec-
nd population decline occurred at about 0.3 Ma in both scenar-
os. After that, the population of M. sinica exhibited r ecov ery in the
cenario inferred by stairway plot 2 but experienced a continuing
ecline in PSMC. The latest population bottleneck in both scenar-

os occurred at about 20 Ka (One thousand years) ago and con-
inued until 10 Ka, when the effective population size of M. sinica
ropped to 1,936 in the stairway plot and 1,784 in PSMC. Ho w e v er,
fter 10 Ka, the effective size of the M. sinica population r ecov er ed
n the stairway plot but showed continuous decline in PSMC. The
ontempor ary effectiv e population size of M. sinica estimated by
eEstimator was 10.9 (3.3–43.7 jackknife CI). 

enetic load and genomic inbreeding coefficient 
n total, 1,196,374,340 high-confidence loci were obtained and
sed as ancestral sequences to predict deleterious mutations;
6,131,74,385, and 36,827 sites were predicted to be deleterious,
ynon ymous, and toler ated, r espectiv el y, in the 21 resequenced
. sinica individuals ( Supplementary Table S24 ). The mean value

f derived homozygous deleterious alleles (HoDA) was 249, rang-
ng from 190 to 298, with the lo w est found in the MC population,
hich had a mean number of 207 (190–216), and the highest was
ound in the XZQ popilation, which had a mean number of 258
220–298) ( Supplementary Table S25 ). The MAD population also
arbors a very high number of HoDA (246), and this population
ad the highest proportion of private HoDA (118, 48%) when com-
ared with other populations (Fig. 3 D, Supplementary Table S25 ).
one of the HoDA was shared among all 5 of these populations. An
v er a ge of 2,607 heterozygous deleterious alleles (HeDA) were de-
ected in M. sinica , ranging from 2,136 to 2,967. The highest num-
er of HeDA was found in the XZQ population, which had a mean
alue of 2,593 (2,136–2,967) ( Supplementary Table S25 ), while the
o w est number of HeDA was found in the MAD population (2,430).
he MAD population shared the highest HeDA with the MC pop-
lation and the lo w est HeDA with the XZQ population. None of
he HeDA was shared among all 5 of the populations . T he derived
llele frequency (DAF) of approximately 32.35% of the deleteri-
us mutations was < 0.05, and all these r ar e deleterious m uta-
ions wer e heter ozygous. Onl y ∼7.1% (1,147/16,131) of the dele-
erious m utations wer e homozygous (DAF > 0.05) ( Supplementary
ig. S12 ). 

At the population le v el, the mean v alue of FR OH in M. sinica w as
.11 ± 0.04, ranging from 0.08 to 0.16, with the lo w est value found
n the DLS population and the highest value found in the MAD
opulation. At the individual le v el, 1 individual (KIBDZL15801)
rom the XZQ population sho w ed the lo w est le v el of inbr eed-
ng and had the lo w est FR OH value (0.06). The individual (KIB-
ZL15803) with the largest FROH value (0.21) was also found in
ZQ population ( Supplementary Table S25 ). 

iscussion 

o date, only 4 species in the Magnoliaceae ( L. chinense , M. offici-
alis , M. obovata , and M. biondii ) have been the objects of in-depth
enomic r esearc h, and this has been mainl y fr om the perspec-
ive of confirming the phylogeny of the angiosperms , in vestigation
f species differentiation, and the biosynthesis of terpenoids. To
ate, no species in the family Magnoliaceae have been studied at
 genome-wide le v el fr om the perspectiv e of conserv ation [ 38–41 ].
rom the aspect of conservation genomics, we report high-quality
hole-genomic data from M. sinica (1.84 Gb with contigs N50 of ca.
5 Mb). This is superior to the data av ailable fr om L. c hinense (1.74
b with contigs N50 of ∼1.43 Mb) [ 38 ], M. officinalis (1.68 Gb, with
ontigs N50 of 0.22 Mb) [ 40 ], M. obovata (1.64 Gb, with contigs N50
f 1.71 Mb) [ 41 ], and M. biondii (2.22 Gb with contigs N50 of 0.27
b) [ 39 ]. 
The early evolution of the core angiosperms has been stud-

ed with whole-genome analysis of certain species of Magnoliids
nd Chloranthales [ 39 , 77 , 120 , 122–125 ]. Ho w ever, the phyloge-
etic relationships between the Magnoliids on the earl y br anc h of
he angiosperm lineage and the eudicots and monocots have been
ontr ov ersial and not full y r esolv ed [ 124 , 125 ]. Our genome-le v el
hylogenetic tree suggests that the magnolias form a sister group
o the eudicots and the Ceratophyllales, while the monocots are
ister to the other core angiosperms . T his is consistent with the
esults of a study into Chloranthales [ 120 , 124 ], but inconsistent
ith the r ele v ant r esults of M. biondii , M. hypoleuca , and M. offici-
alis [ 39–41 ]. The evolutionary history of the angiosperms was ac-
ompanied by frequent WGD events. Ho w ever, evidence of WGD
 v ents was inferr ed fr om dot plots and Ks, which is insufficient to
emonstr ate whether an y 2 species v ery close to differentiation
hare a WGD event. In our study, we concatenated homologous
enes to construct a c hr omosome-le v el synten y tr ee to make our
nfer ences mor e r eliable. Our infer ence r esults suggest that WGD

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad110#supplementary-data
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A B

C D

Figure 3: Distribution map, population structure, demographic history, and Venn diagram of Magnolia sinica . (A) Distribution map showing the 
locations of the 5 subpopulations in Yunnan. (B) Plots of the population structure of 21 M. sinica individuals from 5 subpopulations ( K ), from K = 1 to K 
= 3. (C) The demogr a phic history of M. sinica inferred in stairway plot 2 (with a generation time of 30 years and a mutation rate of 1.2e-7; the 95% 

confidence interval for the estimated effective population size is shown in a light blue color) and PSMC plot (with 21 samples of M. sinica , with the 
green line being the average effective population size). (D) Venn diagram showing distribution of shared and unique deleterious mutations among the 
5 subpopulations of M. sinica. 
DLS, Dalishu population in Maguan County; FD, Fadou population in Xichou County; MAD, Maandi population in Jinping County; MC, Miechang 
population in Maguan County; XZQ, Xinzhaiqing population in Maguan County. 
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e v ents also occurred after the differentiation of the magnoliids 
fr om other gr oups, whic h is in a gr eement with other studies [ 125 ].

Genetic diversity is essential to allow species evolution in re- 
sponse to envir onmental c hanges and has been predicted to be 
positiv el y corr elated with species fitness and evolutionary poten- 
tial [ 126 ]. We found that M. sinica had r elativ el y high genetic di- 
v ersity, whic h is consistent with pr e vious r esearc h based on SSR 

markers [ 49 ]. This high diversity could be explained by the fact 
that, as a tree species, M. sinica has a long life span (ca. 30 years).
De Kort et al. [ 127 ] compared the genetic diversity of 164 an- 
nuals , 1,405 perennials , 308 shrubs , and 2,337 trees and found 

that although species-le v el div ersity is lo w er for long-lived or lo w- 
fecundity species than for short-lived or high-fecundity species, 
population-le v el genetic div ersity is usuall y higher for long-living 
plants, as they may respond more slowly to reduced gene flow. An- 
ther reason for this high diversity could be that M. sinica is found
n southern subtropical monsoon broadleaved evergreen forests 
 5 , 48 ]. Species around the equator are expected to have higher
opulation-le v el genetic diversity than other species . T his is be-
ause in theoretical prediction analyses, the abundant precipita- 
ion around the equator shows a significant r elativ e contribution
o population genetic diversity, although the exact mechanisms 
nd extent of this are still unknown [ 127 ]. Mor eov er , the pollinator -
ependent pollination system may contribute to the high genetic 
iversity in M. sinica [ 49 ]. 

M. sinica has low genetic differentiation between subpopula- 
ions, which could be attributed to higher gene flow among sub-
opulations, despite the fr a gmented distribution of the species
 49 ]. The species has an outcrossing mating system, which is pol-
inator dependent, and 2 species of beetles appear to be effective
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ollinators [ 5 , 48 ]. Pr e vious r esearc h has demonstr ated that some
eetles can fly up to 12 km [ 128 ]. Long-distance pollen-mediated
ene flow among populations may decrease population genetic
ifferentiation [ 129 ]. The smaller FROH and lower inbreeding load

n M. sinica compared with Acer yangbiense may also indicate the
xistence of certain gene flow among its isolated populations [ 121 ]
r from other populations that we have not found. As most of
he reported populations of M. sinica are found on the borders
f China with other countries, it is not unreasonable to suggest
hat other unreported individuals or populations exist outside
hina. 

Southeast Yunnan is an important biodiversity hotspot [ 130 ]
nd is shielded by the Ailao Mountains from the climate fluctu-
tions caused by glaciation and the uplift of the Himalayas and
he Hengduan Mountains [ 131 ]. From the geological point of view,
here is no evidence that southeast Yunnan was affected by the
uaternary ice age, and simulations of climate data suggest that

his area was not seriously affected by the global temper atur e
rop [ 132 ]. In our results , stairwa y plot 2 detected major popu-

ation declines, which is similar to the inferred demographic his-
ory of the sympatric Magnolia fistulosa [ 133 ]. Each M. sinica pop-
lation decline inferred in the stairway plot could be verified in
SMC (Fig. 3 C). Ho w e v er, the demogr a phic history of M. sinica in-
erred b y stairw ay plot 2 sho ws population rebound after each de-
line, which was not obvious in the PSMC analysis . Moreo ver, the
tairway plot can estimate very recent events, while PSMC esti-
ates only up to 10,000 years ago (Fig. 3 C). The earliest inferred

opulation decline occurred 1.0 to 1.2 Ma, which is consistent with
he mid-Pleistocene transition [ 134 ]. Population declines at a sim-
lar time are also reflected in other sympatric species such as Acer
angbiense [ 121 ] and Buddleja alternifolia [ 120 ]. The second popu-
ation decline occurred at 0.3 Ma, during which global temper-
ture experienced a general decline [ 135 ]. The latest population
ecline occurred at ca. 20 Ka and may have been caused by the
ast Glacial Maximum (19.0–26.5 Ka) [ 136 ]. Multiple population
eclines ma y ha v e r esulted in a narrow distribution of M. sinica ,
nd the stable population sizes from about 1 Ka inferred in the
tairwa y plot ma y be a result of the v ery r ecent lar ge-scale anthr o-
ogenic land de v elopment and land-use changes in the habitat of
. sinica and is likely to have been responsible for the extr emel y

 ar e status of this species [ 27 ]; this is also consistent with the char-
cteristics of high genetic diversity and low genetic differentiation
f this species . T he value of genetic differentiation among popu-
ations separated in recently tends to be lo w er than those isolated
r om histprical, especiall y for species with long gener ation times
 137 ]. M. sinica has a pollinator-dependent outcrossing mating sys-
em, which may contribute to its high genetic diversity, while high
ene flow among populations may maintain links between popu-
ations of this species and may contribute to its low genetic differ-
ntiation. The r ecent r eduction in population size due to anthro-
ogenic activities has led to an isolation state of the populations,

eading to the high genetic diversity and low genetic differentia-
ion now observed in the fr a gmented populations of this endan-
er ed tr ee species . Similar patterns ha v e been r eported in Mic helia
oriacea , another species in the Magnoliaceae [ 138 ]. 

The MAD population only sampled a single individual with a
igher le v el of inbr eeding (FR OH = 0.16), lo w er heter ozygosity r ate

1.19%), and higher homozygous deleterious allele number (246)
han other populations. Gene flow has been proposed as a poten-
ial strategy to sustain small and isolated populations by masking
f deleterious alleles [ 139 ]. We found that the DLS population had
 higher heterozygosity rate (1.32%) and shared few homozygous
eleterious mutations with the tree from the MAD population.
he DLS population could ther efor e serv e as source material for
r eeding, whic h could be used to mask homozygous deleterious
utations in future MAD population individuals. Methods such as

opulation reinforcement, hand pollination to assist pollen flow
by collecting pollen from the DLS population and pollinating the

AD population), or the transplantation of seedlings from the DLS
opulation into MAD could also be consider ed. Similarl y, an in-
ividual (KIBDZL15801) in the XZQ population also had a higher
eter ozygosity r ate (1.37%) and a smaller number of HoDA (220)
han the MAD population. Pollen from KIBDZL15801 could there-
ore be used to assist gene flow to KIBDZL15803 and KIBDZL15807,
 other individuals from the XZQ population with lo w er heterozy-
osity rates (1.12% and 1.16%, r espectiv el y) and higher numbers
f HoDA (298 and 286, r espectiv el y). 

The identification of a management unit (MU) is essential for
he management of natural populations [ 140 ]. The FD population
as genetically pure, and had no admixture with other popula-

ions e v en when K = 2 and K = 3. This could be attributed to
ts distance from the other populations (about 66–145 km), which

ay decrease opportunities for pollen flow. Similarly, population
ZQ was also found to be genetically pure at K = 2 and K = 3.
e ther efor e suggest that the FD and XZQ populations should be

reated as 2 separate evolutionarily significant units (ESUs). The
AD and MC populations were genetically similar at all values

f K , and we suggest that they be treated as another ESU. Impor-
antly, ho w ever, the MAD and MC populations are found outside
f any existing nature reserves, and it is therefore necessary to in-
lude these populations in a nature reserve or to establish specific
onserv ation r egions to pr otect them. 

The main threats currently faced by M. sinica are as follows:
i) substantial reduction and loss of the original habitat, leading
o se v er e habitat fr a gmentation and population isolation; (ii) the
arge-scale planting of Amomum tsaoko under forest cover, which

eans that M. sinica is unable to r egener ate natur all y in the wild,
nd there are no seedlings; and (iii) excessive artificial seed collec-
ion. Fortunately, since 2005, because this plant is a critically en-
anger ed fla gship species, compr ehensiv e scientific r esearc h, in-
luding r epr oductiv e and seed biology, conservation genetics, and
r otection measur es including field inv estigations, in situ conser-
 ation, ex situ conserv ation, and r eintr oduction, has been gr adu-
lly implemented [ 14 , 48 , 50 , 51 , 53 ]. At present, in addition to the
xisting pr otection measur es, str engthening of the mana gement
f nature reserves and reduction of the disturbance by human
ctivities in the original habitats of wild populations are urgently
eeded. In particular, it is necessary to stop the large-scale plant-

ng of commercial crops ( A. tsaoko ) under these for ests, whic h is
mportant to r estor e their natur al r egener ation in the wild. Unlike

ost of the se v er el y thr eatened species, M. sinica has high genetic
iversity and low genetic differ entiation, whic h is also consistent
ith r esearc h into other endanger ed species in the Ma gnoliaceae

 133 , 141 ,142 ]. Ho w e v er, considering that the generation time of M.
inica can be as long as 30 years, the isolation of the various popu-
ations, the serious habitat fr a gmentation, and that ther e ar e v ery
ew wild individuals, we still need to consider potential future in-
r eeding depr ession. Mor e artificial outcr ossing str ategies should
e designed in the future to reduce the loss of genetic diversity
aused by inbreeding, and these strategies should be considered
nstead of collecting seeds and simply breeding more individu-
ls [ 26 ]. Our genomic study into M. sinica provides an example of
igh genetic diversity and low genetic differentiation in a long-

iv ed tr ee species and informs the futur e formation and mainte-
ance of conservation strategies necessary for the survival of such
 PSESP. 
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