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ABSTRACT Bumblebees are among the most abundant and important pollinators for 
sub-alpine and alpine flowering plant species in the Northern Hemisphere, but little is 
known about their adaptations to high elevations. In this article, we focused on two 
bumblebee species, Bombus friseanus and Bombus prshewalskyi, and their respective gut 
microbiota. The two species, distributed through the Hengduan Mountains of south
western China, show species replacement at different elevations. We performed genome 
sequencing based on 20 worker bee samples of each species. Applying evolutionary 
population genetics and metagenomic approaches, we detected genes under selec
tion and analyzed functional pathways between bumblebees and their gut microbes. 
We found clear genetic differentiation between the two host species and significant 
differences in their microbiota. Species replacement occurred in both hosts and their 
bacteria (Snodgrassella) with an increase in elevation. These extremely high-elevation 
bumblebees show evidence of positive selection related to diverse biological processes. 
Positively selected genes involved in host immune systems probably contributed to gut 
microbiota changes, while the butyrate generated by gut microbiota may influence both 
host energy metabolism and immune systems. This suggests a close association between 
the genomes of the host species and their microbiomes based on some degree of natural 
selection.

IMPORTANCE Two closely related and dominant bumblebee species, distributed at 
different elevations through the Hengduan Mountains of southwestern China, showed a 
clear genomic signature of adaptation to elevation at the molecular level and significant 
differences in their respective microbiota. Species replacement occurred in both hosts 
and their bacteria (Snodgrassella) with an increase in elevation. Bumblebees’ adapta
tions to higher elevations are closely associated with their gut microbiota through two 
biological processes: energy metabolism and immune response. Information allowing us 
to understand the adaptive mechanisms of species to extreme conditions is implicit if we 
are to conserve them as their environments change.

KEYWORDS high elevation, adaptive selection, Bombus, bumblebee microbiome, gut 
microbiome, metagenome, population structure

E nvironments at high elevations are characterized by low temperature, high radiation, 
and hypoxia, presenting strong selective pressures on their resident fauna (1). 

Genetic variants, contributing to animals’ adaptations to high elevations, have been 
found to be present in Tibetans (2), yaks (3), Tibetan pigs (4), and some insects includ
ing honeybees (5) and locusts (6). While bumblebees (Apidae: Bombus) remain one of 
the most important pollinators of wildflowers and crops, few studies focus on their 
adaptation to high elevations. The most recent research work provides a comparative 
study focusing on the genomes of 17 Bombus species within 15 subgenera related to 
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high-elevation adaptation (7). However, the authors found no positive selection genes in 
common within four high-elevation species. This can be attributed to multiple factors. 
First, each bumblebee species may have a different genetic architecture of adaptation. 
Second, bumblebees’ adaptation to high elevations may be a polygenic trait, with 
different loci selected in each species. Besides, phylogenetic analyses on multispecies 
divergence data identify long-term genetic variations that have been fixed in each 
species, which may lead to missed detection of recent adaptive signals. Therefore, to 
understand bumblebees’ high-elevation adaptation strategies, more species need to be 
investigated using more sensitive methods. Comparatively investigating closely related 
species that occupy different elevation ranges based on population approaches may be 
useful in identifying more candidate genes under adaptive selection (8, 9).

Accumulating evidence indicates that gut microbes regulate their host’s physiology 
and health. In particular, specific gut microbes are now associated with high-elevation 
adaptations, including the people of Tibet (10, 11) and some of their domesticated 
mammals (12, 13). However, the composition of the gut microbiota of eusocial honey
bees and bumblebees appears simpler compared to that of mammals (14, 15). Just a 
handful of taxa of bacteria dominate the bumblebee gut floras, including Snodgrassella, 
Gilliamella, Schmidhempelia, Bifidobacteriaceae, and two clusters within the Lactobacilla
ceae. Previous studies showed that these bacteria exhibited host specificity, substantial 
strain-level diversity, differences in genome structure and function, and spatial niche 
partitioning within individual hosts (15–17). Therefore, it is reasonable to assume that the 
gut microbiota of high-elevation bumblebees may possess a unique composition and 
function that may be indicative of their adaptation to certain extreme conditions.

The Hengduan Mountains of southwestern China are classified as a global hotspot 
(18) and one of several centers of bumblebee diversity. In general, bumblebees remain 
the most abundant and important pollinator in the Order Hymenoptera for sub-alpine 
and alpine plant species (19, 20). As the elevation zones increase from 2,000 to 4,000 
m, closely related bumblebee species are replaced (20). The most notable replacement 
occurs between two species in subgenus Melanobombus: Bombus friseanus and Bombus 
prshewalskyi. These two species shared a common ancestor 4.5 million years ago (18). At 
these elevations, B. friseanus is distributed from 1,500 to 3,500 m, while B. prshewalskyi is 
found above the tree line from 3,500 to 5,000 m.

B. friseanus is endemic to the Hengduan Mountains, foraging in subalpine meadows 
bordering conifer forests, and is abundant between 2,700 and 3,300 m on the Yulong 
Snow Mountain (20). At 3,200 m, B. friseanus accounted for 68% of all bumblebee 
species in situ, dominating bumblebee–plant networks (19). In contrast, B. prshewalskyi 
is distributed from the Hengduan Mountain westward through the Tibetan Plateau and 
the Eastern Himalayas (18). It is abundant above 4,200 m on the Baima Snow Mountain. 
Species replacements along elevation gradients are common in montane sites (21, 22), 
suggesting different adaptations to localized biotic and abiotic factors among closely 
related species (23). Therefore, we propose that B. friseanus and B. prshewalskyi provide a 
representative model for understanding the adaptation mechanism of wild bumblebees 
to extremely high elevations. We hypothesize that, compared to B. friseanus, B. prshewal
skyi may have unique characteristics in its genome and gut microbiota, allowing this 
insect to survive at extremely high elevations.

We collected workers of B. friseanus and B. prshewalskyi and extracted their guts. 
Deep-coverage metagenomic shotgun sequencing was performed for host and gut 
microbiomes. We conducted evolutionary population genetic analyses to identify 
genetic variants related to bumblebee adaptations to extremely high elevations. 
Comparative metagenomic analyses were applied to provide an overview of the gut 
microbiota diversity and functional differences. Integration of these results should 
deepen our understanding of ecophysiological strategies employed by bumblebees to 
survive in extreme environmental conditions.
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RESULTS

Metagenomic sequencing of bumblebees

Deep-coverage metagenomic shotgun sequencing performed on all 20 samples for each 
species (Fig. 1; Table S1) resulted in an average of 36 Gbp for each sample. Subsequent 
processing divided each sample datum into two parts (Table S2). One part derived from 
the bumblebee host showed an average of 28.36 Gbp, and the second part derived from 
gut microbes had an average of 8.39 Gbp. Among 40 samples, 35 (N = 19 for B. friseanus; 
N = 16 for B. prshewalskyi) had over 15 Gbp corresponding to the host. The remaining 
five had 3.45–11.96 Gbp corresponding to the host. All 40 samples had over 1.2 Gbp 
corresponding to the gut microbiome.

Host population structure and adaptation

Genome alignment indicated an average of 112.5× sequencing coverage for each 
individual relative to a 225-Mb reference genome of Bombus pyrosoma. The average 
nucleotide identity (ANI) between B. friseanus and B. prshewalskyi genomes was 99.03%. 
A total of 112,132 single nucleotide polymorphisms (SNPs) were identified. Reduced 
genome-wide linkage disequilibrium and genetic diversity (π) were observed in the B. 
prshewalskyi populations at extremely high elevations (Fig. S1A and B). Based on linkage 
disequilibrium, the estimated effective population sizes of B. friseanus and B. prshewalskyi 
populations were 1,065 and 69, respectively. Population genetic analyses showed that B. 
friseanus and B. prshewalskyi populations formed two branches and divided distinctly in 
the maximum likelihood tree. This clear division was demonstrated further by genetic 
structure analysis at K = 2 (Fig. 2A). Principal component analysis (PCA) also supported 
the clear division of these two species. In PCA, the first principal component (PC) axes 
explained 11.18% of the total variation separating both bumblebee populations (Fig. 
S1C).

The McDonald–Kreitman (MK) test identified 23 candidate genes under positive 
selection from 2,009 genes with sufficient polymorphisms (Fig. 2B; Table S3). Eighteen of 
them were involved in multiple GO processes (Fig. 2C), ranging from basic to more 
complicated cellular processes. The basic cellular biological processes included the 
regulation of DNA transcription (GO:0006351, BRM, ZN236), RNA metabolic process 
[GO:0006396 (RNA), PNPT1; GO:0010586 (miRNA), LIN41], protein processing 
(GO:0015031, CUBN; GO:0006457, TRAP1; GO:0018126, OGFD1), actin cytoskeleton 
organization (GO:0030036, SPTN5), inner dynein arm assembly (GO:0036159, DYH1B), 
and hydrogen peroxide catabolic process (GO:0042744, PERO). The more complicated 
processes included response to stress/oxidative stress (GO:0006950, TRAP1; GO:0006979, 
PERO; GO:0034599, PNPT1), regulation of cellular respiration (GO:0043457, PNPT1; 
GO:1901856, TRAP1), developmental processes (GO:0035329, GO:0045742, BRM; 
GO:0008543, LIN41; GO:0045926, PNPT1), immune system processes (GO:0045088, BRM; 
GO:0008063, SPZ4), cell redox homeostasis (GO:0045454, NHLC2), cilium movement 
involved in cell motility (GO:0060294, DYH1B), locomotory behavior (GO:0007626, 
CAD23), oxidation–reduction processes (GO:0055114, FAS, FASC, OGFD1, LAC1), cellular 
response to glucose stimulus (GO:0071333, Zn236), and the insulin signaling pathway 
(GO: 0008286, INSR; GO: 0046627, GRB14). In general, all these functions were grouped 
within six physiological processes, namely, cellular respiration, stress response, growth 
and development, locomotory behavior, immune response, and energy metabolism.

Microbiota composition and functions

Taxonomic profiles of bumblebee gut microbiomes estimated using the Kraken2 
software showed that the core gut bacteria of bumblebees (i.e., Gilliamella, Snodgrassella, 
Lactobacillus, Bifidobacterium, and Apibacter) dominated most samples, although seven 
samples were dominated exclusively by pathogens. Specifically, four samples from B. 
friseanus were dominated by eukaryotic Crithidia sp., and three samples of B. prshewalskyi 
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were dominated by potentially pathogenic bacteria including Pseudomonas sp., Serratia 
sp., and Rahnella sp. (Fig. 3A).

PCoA based on the distance calculated by KmerFreqCalc showed distinct clusters of 
the gut microbiomes from two bumblebee species. The first PC explained 43.5% and the 
second 34.1% (Fig. 3B). The two clusters were significantly associated with host specificity 
[permutational analysis of variance (PERMANOVA) F1, 29= 14.30, r2 = 0.33, P < 0.01). In 
addition, the difference between gut microbiomes showed a weak relation to the plant 
species foraged on by the worker castes of both species (PERMANOVA F8, 22= 3.07, r2 = 
0.53, P < 0.05).

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis 
identified a total of 72 pathways in all samples. The LEfSe analysis showed pathways with 
significantly different abundances between the two bumblebee species involved in cell 
motility, cell community, membrane transport, signal transduction, amino acid metabo
lism, carbohydrate metabolism, and energy metabolism (Fig. 3C; Table S4). The relatively 
enriched KEGG pathways in the B. prshewalskyi gut microbiota included the flagellar 
assembly (ko02040), biofilm formation (ko02026), quorum sensing (ko02024), ATP-
binding cassette (ABC) transporters (ko02010), two-component systems (ko02020), 
butanoate metabolism (ko00650), sulfur relay system (ko04122), and valine/leucine/
isoleucine degradation (ko00280). In comparison, the more enriched pathways in the gut 
of B. friseanus included the bacteria secretion system (ko03070), methane metabolism 
(ko00680), lysine biosynthesis (ko00300), cysteine/methionine metabolism (ko00270), 
glycine/serine/threonine metabolism (ko00260), streptomycin biosynthesis (ko00521), 
aminoacyl-tRNA biosynthesis (ko00970), and base excision repair (ko03410).

Metagenomic binning

Metagenomic binning yielded 23 bins showing >85% completeness and <5% contami
nation (Table S5). Taxonomic identification classified eight bins representing genera of 

FIG 1 Sample sites of the two bumblebee species. Workers of B. friseanus were collected from the yellow dot sites on Yulong Snow Mountain and Shika Snow 

Mountain (3,200 m). Collection sites of B. prshewalskyi are marked with blue dots on Baima Snow Mountain above 4,200 m.
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eusocial bee gut core bacteria. This represented one bin from Gilliamella, two from 
Snodgrassella, two from Lactobacillus, two from Bifidobacterium, and one from Apibacter. 
Phylogenetic analysis showed that most of the core bacterial bins clustered together 
within typical strains of bumblebee gut bacteria, forming distinct clusters with their 
relatives in the honeybee gut, excluding the bin of Snodgrassella_1 located at the base of 
the Snodgrassella clade (Fig. S2). Quantitative analysis showed that the relative abun
dance patterns of four bins (Snodgrassella_1, Snodgrassella_2, Bifidobacterium_2, and 
Lactobacillus_2) differed significantly in the two bumblebee species (Wilcoxon rank-sum 
test, P < 0.01) (Fig. 4A; Fig. S3). Notably, Snodgrassella bins showed clear host specificity. 
Snodgrassella_1 dominated B. friseanus, while Snodgrassella_2 dominated B. prshewalskyi.

Two Snodgrassella bins

The completeness of Snodgrassella_1 and Snodgrassella_2 bins was 94.77% and 88.82%, 
respectively. The ANI between the two bins was 77.65%. Phylogenomic analysis indica
ted that the two Snodgrassella bins differed significantly. Snodgrassella_1 clustered on 
the base of the Snodgrassella clade, while Snodgrassella_2 clustered with other strains 

FIG 2 Host population differentiation and adaptation to higher (4,200 m) elevations. (A) Maximum likelihood tree and 

population structure of two bumblebee species. (B) The result of the McDonald–Kreitman test on coding genes of bumble

bees. Orange diamonds indicate those genes under positive selection, while gray circles indicate other genes. FN / FS: the fixed 

nonsynonymous/synonymous ratio between species; PN / PS: the polymorphism nonsynonymous/synonymous ratio within 

species. (C) Candidate genes under positive selection are involved in diverse gene ontology (GO) processes. Lines indicate that 

genes are associated with the GO processes.
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from bumblebees (Fig. S2). Alignment with the genome of Snodgrassella alvi_wkB2 
showed that each bin had unique genes (59 for Snodgrassella_1 and 336 for Snodgras
sella_2), with 1,377 genes shared (Fig. 4B; Table S6). Five pathways showed enrichment in 
the 336 Snodgrassella_2 unique genes, including metabolic pathways, microbial 
metabolism in a diverse environment, butanoate metabolism, oxidative phosphoryla
tion, and sulfur metabolism. No pathways were enriched in the 59 genes unique to 
Snodgrassella_1 (Fig. 4C). Further analysis indicated that genes involved in butanoate 
metabolism showed significant differences in the two bins (Fig. S4A). Snodgrassella_2 
had twice as many genes involved in the butanoate synthesis pathway as Snodgras
sella_1 (Fig. S4B).

To identify the adaptation signals of the two Snodgrassella bins, 15 sets of sequencing 
reads for each of the Snodgrassella bins were derived from raw data, identifying a total of 
95,215 SNPs. Population genetic analyses, including population genetic structure (K = 2) 
and the maximum likelihood tree, showed a clear division between Snodgrassella_1 and 
Snodgrassella_2 (Fig. 4D). The MK test identified 22 candidate genes under positive 
selection from 496 with sufficient polymorphisms (Table S7; Fig. 4E). These genes 
involved in multiple KEGG pathways, including beta-lactam resistance (ko01501: two 
genes), two-component systems (ko02020: four genes), ABC transporters (ko02010: two 

FIG 3 Gut communities of two bumblebee species differing in composition and function. (A) Taxonomic profiles of bumblebee gut microbiota estimated using 

the Kraken2 software. (B) Principal coordinate analysis (PCoA) based on the distance calculated by KmerFreqCalc. The clusters of bumblebee gut microbiotas 

were significantly associated with host specificity [permutational analysis of variance (PERMANOVA) F1, 29= 14.30, r2 = 0.33, P < 0.01] and related weakly with 

plant species foraged on by worker bees (PERMANOVA F8, 22= 3.07, r2 = 0.53, P < 0.05). (C) Kyoto Encyclopedia of Genes and Genomes pathways with differential 

relative abundances between gut microbiomes of B. friseanus and B. prshewalskyi.
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genes), purine metabolism (ko00230: two genes), amino acid metabolism (ko00250: one 
gene, ko00260: one gene, and ko00400: one gene), riboflavin metabolism (ko00740: one 
gene), pentose phosphate pathway (ko00030: one gene), and homologous recombina
tion (ko03440: one gene).

FIG 4 Metagenome binning revealed a pair of vicariously distributed species in Snodgrassella bacteria and the adaptation of 

Snodgrassella bacteria to the gut environment in a host restricted to a higher elevation. (A) The abundance of metagenome 

assembly bins in each healthy sample of bumblebees. The bins with significantly different abundances in two bumblebee 

species are marked with ** (P < 0.01, rank-sum test) or *** (P < 0.001, rank-sum test). (B) Comparison of gene compositions 

between two Snodgrassella bins using the genome of Snodgrassella alvi_wkB2 as the reference. (C) KEGG pathway enrichment 

analysis in the unique genes of Snodgrassella bins. (D) Maximum likelihood tree and population structure of two Snodg rassella 

bins. (E) The result of the McDonald–Kreitman test on genes in Snodgrassella bins. FN / FS: fixed nonsynonymous/synonymous 

ratio between species; PN / PS: polymorphism nonsynonymous/synonymous ratio within species. Colored diamonds indicate 

the genes under positive selection ((FN / FS) / (PN / PS) >1 and Fisher’s exact test P < 0.05) in diverse KEGG pathways, while gray 

circles indicate other genes.

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.01219-23 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

5 
Fe

br
ua

ry
 2

02
4 

by
 1

83
.2

24
.2

39
.1

43
.

https://doi.org/10.1128/msystems.01219-23


DISCUSSION

We focused on two bumblebee species from the same subgenus as well as their gut 
microbiota, allowing us to hypothesize that genetic diversity in these two prospective 
host insects occurs along distinct zoogeographic ranges as shaped by adaptive selection. 
We also expected to detect differences between their gut microbiotas via metagenomic 
approaches, which may be involved in host genome differences.

We identified 23 genes under positive selection in B. prshewalskyi living at extremely 
high elevations. Consequently, it is not surprising that the gut microbiotas of both 
bumblebee species are significantly different in composition and function. Under 
positive selection, these 23 genes in B. prshewalskyi underlie diverse biological pro
cesses, implying that bumblebees adapt to extremely high elevations via complex and 
systematic mechanisms. Three genes associated with the regulation of cellular respira
tion (TRAP1 and PNPT1) and response to stress/oxidative stress (TRAP1, PNPT1, and 
PERO) significantly reflect the adaptation to hypoxia at greater heights. In particular, the 
positively selected BRM gene indicates that transcriptional regulation plays an important 
role in maintaining normal development and growth of bumblebees living under harsh 
conditions (i.e., lower ambient temperatures and hypoxia). A recent study on males of B. 
terrestris in Britain also showed that environmental pressures most likely contributed to 
recent changes in genes underlying physiology, neurology, and wing development (9).

Furthermore, BRM together with Spätzle (Spz) suggests ongoing stress on the 
bumblebees’ immune systems, with BRM regulating the innate immune response and 
SPZ in the Toll-like signaling pathway. The Toll-like signaling pathway is one of the most 
important intracellular signaling pathways in innate immunity systems in bees (24, 25) 
and other insects including Drosophila (26). In humans, acute high-elevation exposure 
upregulated the inflammatory signaling pathways and may have sensitized the toll-like 
receptor 4 (TLR4) signaling pathway to subsequent inflammatory stimuli (27). Further 
evaluation of the expression level and function of BRM or Spz and other immunological 
tests may provide additional support via future experimentation. Seven genes (FAS, 
FASC, OGFD1, LAC1, INSR, GRB14, and Zn236) involved in metabolic processes imply 
strong pressures on energy metabolism in montane bumblebees. Among them, INSR 
(insulin-like peptide receptor) and GRB14 are mentioned because they are involved 
in the insulin or insulin-like growth peptide signaling (IIS) pathway, an evolutionar
ily conservative nutrient-sensing pathway that modulates energy metabolism and 
development in metazoans (28, 29). In honeybees, the IIS pathway participates in the 
regulation of caste development (30–32) and the response to cold stress (33). The IIS 
pathway is also reported to contribute to the adaptive response to hypoxia in other 
insects including Drosophila (34, 35) and Tibetan locusts (6). Consequently, we propose 
here that the genetic variants of INSR and GRB14 in B. prshewalskyi play important roles 
in adapting bumblebee workers to hypoxia at extremely high elevations by regulating 
energy metabolism.

Additionally, the results suggest a potential correlation between the gut microbiota 
and those bumblebee adaptations, focusing on butanoate metabolism in the microbiota 
of B. prshewalskyi and the bins of Snodgrassella_2. Butanoate (or butyrate) is one of 
the short-chain fatty acids (SCFAs) generated by gut microbes. It can activate G-cou
pled-receptors directly, inhibit histone deacetylases, and serve as an energy substrate, 
regulating an animal’s physiology and health (36–38). In humans, butyrate is the primary 
energy source for colonocytes and also protects against colorectal cancer and inflam
mation (39, 40). It can improve the host’s metabolism of carbohydrates and lipids by 
serving as a signal molecule (41). Mice fed with a butyrate-enriched high-fat diet showed 
increased thermogenesis and energy expenditure and appeared resistant to obesity (42). 
Though simpler than the human or mice gut microbiota, the honeybee gut microbiota 
exhibits a variety of beneficial effects, from gut-centric functions like digestion (43), 
detoxification (44), and defense from pathogens (45), to more peripheral processes 
like behavior (46). The bumblebee gut microbiota has also been shown to provide 
some resistance to a trypanosomatid parasite (Crithidia bombi) (47). These effects are 
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thought to be mediated, in part, by SCFAs (43). Considered synthetically, we propose that 
butyrate concentrations in the guts of bumblebees affect their energy metabolism and 
gut immunity. As both processes appear to be under stress at extremely high elevations, 
the results suggest that the gut microbiota may influence their hosts’ adaptations by 
adjusting the concentration of butyrate. Biochemical details of the impact effect of the 
gut microbiota on the bumblebee host should be elucidated further by experimentation 
on the gut butyrate and host physiology of these two bumblebee species or on related 
model species.

The different gut communities in the two bumblebee species reflect the hosts’ 
distinctive influence on their own gut microbiota. It is well known that host genetic 
background and diet are major factors influencing the gut microbiota (48–51). As plant 
species foraged upon by the bumblebee, samples were shown to correlate weakly 
with differences in gut microbiotas, and these differences may be mainly due to the 
hosts’ genetic background changes. The 22 genes involved in multiple KEGG pathways 
under positive selection in Snodgrassella_2 suggest strong host stress on their signaling 
pathway and antibiotic resistance process. Snodgrassella bacteria, forming a biofilm 
on the bumblebees’ ileum wall (15), directly encounter their host’s immune system. A 
recent study reported that the host specificity of honeybee gut bacteria was determined 
through reactive oxygen species that are regulated by immune deficiency and Toll 
pathways (52). Therefore, those host genetic variants involved in the immune system 
probably contribute to the species replacement of Snodgrassella.

In conclusion, we have helped to show that at extremely high elevations, B. prshewal
skyi shows signs of positive selection in diverse biological processes, including cellular 
respiration, stress response, growth and development, locomotory behavior, immune 
system, and energy metabolism. We also found differences in both the composition 
and function of the bumblebee gut microbiome along an elevation gradient. Differen
ces between the host bee species and their gut microbe species, as driven by adap
tive selection, are probably functional and suggest a closer association between the 
genomes of hosts and their microbiomes. As adaptations shared by these bumblebee 
species with their microbiota indicate some degree of specialization, it may also reflect 
some degree of coevolution, but this will require further study.

MATERIALS AND METHODS

Bumblebee sampling

We collected workers of B. friseanus and B. prshewalskyi for gut extraction from 11 August 
to 15 August 2020. Workers of B. friseanus were collected between 2,700 and 3,200 m 
on Yulong Snow Mountain and the Shika Snow Mountain, northwest Yunnan. Collections 
of B. prshewalskyi came from 4,200 to 4,700 m on Baima Snow Mountain (Fig. 1, and 
Table S1 for the detailed information of sampling sites). As bumblebees are eusocial 
insects, we tried to avoid collecting individuals from the same colony by sampling more 
than one site on the three mountains for both species. The subsequent population 
genetic analyses of both species showed a high divergence among individual workers, 
suggesting that we did collect specimens from more than one colony (Fig. 2A).

We recorded the observation date, time, and plant species on which each foraging 
worker was collected. Each specimen was netted and stored in a separate 50 mL 
Eppendorf tube and euthanized at 4°C prior to gut dissection. Specimens were identified 
as species using morphological characters (18) under field conditions. Gut dissections 
and their preservation were performed in the field on the day of collection using a Stereo 
Microscope (Zeiss Stemi 508) as follows.

The surface of each bumblebee was first washed in droplets of 70% ethanol for 30 s 
and then rinsed with sterile water three times to remove external contaminants. We 
then pulled out the entire gut from the abdomen terminus using sterilized forceps. Each 
gut specimen was rinsed twice immediately with 0.9% sterile NaCl solution to maintain 
cell pressure. Each sample was stored separately in a 2mL cryotube placed in liquid 
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nitrogen. After returning to the laboratory, gut specimens were frozen at –80°C until DNA 
extraction. In total, we collected 20 gut samples for each Bombus species.

Metagenomic shotgun sequencing and processing

Total genomic DNA was extracted from gut materials using the E.Z.N.A. Soil DNA Kit 
(Omega Bio-Tek, Norcross, GA, USA). The concentration and purity of extracted DNA 
were determined with TBS-380 and NanoDrop2000, respectively. DNA extract quality was 
checked on a 1% agarose gel. The DNA extract was fragmented to an average size of 
about 400 bp using Covaris M220 (Gene Company Limited, China) for paired-end library 
construction. The paired-end library was constructed using NEXTFLEX Rapid DNA-Seq 
(Bioo Scientific, Austin, TX, USA). Adapters containing the full complement of sequenc
ing primer hybridization sites were ligated to the blunt end of fragments. Paired-end 
sequencing was performed on Illumina NovaSeq 6000 (Illumina Inc., San Diego, CA, USA) 
at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) using NovaSeq Reagent 
Kits, generating an average of 36 gigabyte bases.

Reads were first trimmed off with Trimmomatic v0.39 (parameters used: LEADING:3 
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:40) (53) and inspected with FastQC v0.11.8 
(54) to validate the trimming quality. Clean reads of each metagenomic sample were 
mapped against the reference genome of B. pyrosoma (GCA_14825855.1) using BWA 
v0.7.17-r1188 (55) to separate reads from the host and its microbes. B. pyrosoma belongs 
to the same subgenus as the two species, and its genome was annotated using Trinotate 
(http://trinotate.sourceforge.net/). About 80% of the total reads were derived from the 
host, and most of the remaining reads belonged to gut microbes. These two datasets 
were used in the subsequent bumblebee genomic and gut microbiome analyses.

Population genetics and evolutionary analyses

The genome sequences of the two bumblebee species were generated based on the 
reference genome of B. pyrosoma and the alignment BAM files. The ANI between 
genomes was calculated using FastANI v.1.1 (56). To obtain high-quality SNPs, the BAM 
files were further processed as follows. PCR duplicates were removed by SAMtools 
v1.9 (57). The UnifiedGenotyper method in GATK v4.1.4.0 software (58) was used for 
SNP calling with default parameters across 40 individuals. To obtain a reliable SNP, we 
performed a filtering step with the following set of parameters: QD <2.0 || MQ <40.0 
|| FS >60.0 || SOR > 3.0 || MQRankSum <−12.5 || ReadPosRankSum <−8.0. The resulting 
VCF file was further filtered using VCFtools v 0.1.17 (59) (parameters: -remove-indels 
--max-alleles 2 --minDP 4 --minQ 70). We combined these methods to generate final 
SNPs. The effective population size (Ne) was estimated by NeEstimator (60) using the 
linkage disequilibrium method. Genome nucleotide diversity (π) was calculated using 
VCFtools v 0.1.17 (59). The significant difference between the two species was evalu
ated using the Wilcoxon rank-sum test. The linkage disequilibrium was calculated by 
PopLDdecay (61).

PCA for the first two components was performed based on the SNP site of the 
bumblebee in Plink (62). The resulting graph was plotted using the ggplot2 package in R 
(63).

The population structure was determined using ADMIXTURE v 1.3.0 (64). The 
estimation was K = 2 to K = 4, and the cross-validation (CV) error estimation was 
minimized at K = 2. A maximum-likelihood phylogenetic tree was constructed by the 
RAxML software (65), with the GTRGAMMA model and 100 bootstraps. An ascertainment 
bias correction was performed to correct for the impact of invariable sites in the data.

The MK test (8) was used to make inferences regarding historical selection by 
comparing fixed divergence and polymorphism at synonymous and nonsynonymous 
sites using a 2 × 2 contingency table. Significance was tested using Fisher’s exact test. 
To correct the false positives, the proportion of amino acid fixations driven by positive 
selection (α) was calculated following the procedure proposed by Shapiro et al. (66).
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Gut microbiome analyses

For each sample, the shotgun reads of the gut microbiome were randomly subsampled 
to reach the same sequencing depth using Seqtk v1.3-r106 (67) with parameters: -s 100, 
number = 1687456. Taxonomic profiles were estimated using the Kraken2 software (68) 
based on a custom comprehensive database, which was built with reference genomes of 
representatives of the Archaea, Eeubacteria, fungi, and protozoans. Relative abundance 
was estimated by Bracken (69). If Crithidia or pathogenic bacteria reads ever accoun
ted for >50%, that sample was classified as “unhealthy individuals” and removed from 
downstream analyses. Similarity between samples was compared using KmerFreqCalc (k 
= 21) (70). PCoA was performed to illustrate the results. Significant differences between 
sample clusters across host specificity and diet type (the flower of the plant species on 
which a bumblebee foraged for nectar and/or pollen) were tested using PERMANOVA 
(adonis function in the vegan package v2.6-2, R software).

All hostfiltered reads were used to build de novo assemblies separately using 
metaSPAdes v3.13.1 (71) with default parameters. The MetaGeneMark v3.38 (72) gene 
prediction tool was employed to predict genes, and functional profiling was determined 
by emapper.py from eggNOG mapper v2.1.3 (73). Gene abundance was quantified with 
Salmon v0.14.1 (74) using subsampled reads. KEGG pathway enrichment analyses were 
performed by ClusterProfiler v4.0 (75). The variance between annotated pathways was 
analyzed using the LEfSe software (76).

Metagenomic binning was performed following the metaWRAP pipeline (77). 
MetaSPAdes v3.13.1 (71) was used to produce co-assemblies for healthy samples from 
the same species. The completeness and contamination of each bin were estimated 
using CheckM v1.1.3 (78). Each bin was assigned taxonomically against the Genome 
Taxonomy Database with GTDB-tk v1.4.1 (79). Only bins meeting both criteria (complete
ness ≥80%; contamination ≤5%) were retained to calculate the ANI using FastANI v.1.1 
(56). A 99% ANI threshold was set to distinguish strains from the same genus or family. 
For sibling bins, the one showing higher completeness and lower contamination was 
selected as one of the core bacterial strains in the bumblebee’s gut. Assemblies of core 
bacteria from the guts of other species of eusocial bees were downloaded from the NCBI 
to construct a phylogenetic tree with the bacterial bins using PhyloPhlAn v3.0.60 (80). 
Relative bin abundance was estimated by Salmon v0.14.1 (74). Rank-sum tests were used 
to determine whether the differences between bacteria abundance were significant.

Comparative analysis of two Snodgrassella bins

Protein-coding regions were predicted using Prokka v1.14.6 (81). Predicted protein 
sequences were aligned to the genome of Snodgrassella alvi wkB2 (KEGG: T03063). 
Pathway enrichment analyses were performed with ClusterProfiler v4.0 (75). Genes 
involved in the butanoate metabolism pathway (ko00650) were compared between two 
Snodgrassella bins and highlighted in the KEGG pathway map.

Sequencing reads belonging to each bin were derived from metagenomic shotgun 
sequencing reads using BWA v0.7.17-r1188 (55) and SAMtools v1.9 (57). We used one 
of the Snodgrassella bins (Snodgrassella_2) as the reference genome to perform the 
subsequent admixture analysis and MK test as described previously.
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